Crab Nebula in the context of "John Charles Duncan"

Play Trivia Questions online!

or

Skip to study material about Crab Nebula in the context of "John Charles Duncan"

Ad spacer

⭐ Core Definition: Crab Nebula

The Crab Nebula (catalogue designations M1, NGC 1952, Taurus A) is a supernova remnant and pulsar wind nebula in the constellation of Taurus. The common name comes from a drawing that somewhat resembled a crab with arms produced by William Parsons, 3rd Earl of Rosse, in 1842 or 1843 using a 36-inch (91 cm) telescope. The nebula was discovered by English astronomer John Bevis in 1731. It corresponds with a bright supernova observed in 1054 C.E. by Mayan, Japanese, and Arab stargazers; this supernova was also recorded by Chinese astronomers as a guest star. The nebula was the first astronomical object identified that corresponds with a historically-observed supernova explosion.

At an apparent magnitude of 8.4, comparable to that of Saturn's moon Titan, it is not visible to the naked eye but can be made out using binoculars under favourable conditions. The nebula lies in the Perseus Arm of the Milky Way galaxy, at a distance of about 2.0 kiloparsecs (6,500 ly) from Earth. It has a diameter of 3.4 parsecs (11 ly), corresponding to an apparent diameter of some 7 arcminutes, and is expanding at a rate of about 1,500 kilometres per second (930 mi/s), or 0.5% of the speed of light.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Crab Nebula in the context of John Charles Duncan

John Charles Duncan (February 8, 1882 – September 10, 1967) was an American astronomer. His work spanned astronomy's transition from a focus on observation and location measurement to astrophysics. He was well known for his basic college textbook "Astronomy", in widespread use for 30 years after its first publication in 1926. His career was a fruitful combination of research and teaching at major observatories, in his own classrooms and through his textbook. Duncan was the first to note the expansion of the Crab Nebula and from that determine the approximate year of its creation, discovered variable stars in what were soon found to be distant galaxies, and describe the nebular structures now known as the Pillars of Creation.

↓ Explore More Topics
In this Dossier

Crab Nebula in the context of Supernova remnant

A supernova remnant (SNR) is the structure resulting from the explosion of a star in a supernova. The supernova remnant is bounded by an expanding shock wave, and consists of ejected material expanding from the explosion, and the interstellar material it sweeps up and shocks along the way.

There are two common routes to a supernova: either a massive star may run out of fuel, ceasing to generate fusion energy in its core, and collapsing inward under the force of its own gravity to form a neutron star or a black hole; or a white dwarf star may accrete material from a companion star until it reaches a critical mass and undergoes a carbon detonation.

↑ Return to Menu

Crab Nebula in the context of Gamma-ray astronomy

Gamma-ray astronomy is a subfield of astronomy where scientists observe and study celestial objects and phenomena in outer space which emit cosmic electromagnetic radiation in the form of gamma rays, i.e. photons with the highest energies (above 100 keV) at the very shortest wavelengths. X-ray astronomy uses the next lower energy range, X-ray radiation, with energy below 100 keV.

In most cases, gamma rays from solar flares and Earth's atmosphere fall in the MeV range, but it's now known that solar flares can also produce gamma rays in the GeV range, contrary to previous beliefs. Much of the detected gamma radiation stems from collisions between hydrogen gas and cosmic rays within our galaxy. These gamma rays, originating from diverse mechanisms such as electron-positron annihilation, the inverse Compton effect and in some cases gamma decay, occur in regions of extreme temperature, density, and magnetic fields, reflecting violent astrophysical processes like the decay of neutral pions. They provide insights into extreme events like supernovae, hypernovae, and the behavior of matter in environments such as pulsars and blazars. A huge number of gamma ray emitting high-energy systems like black holes, stellar coronas, neutron stars, white dwarf stars, remnants of supernova, clusters of galaxies, including the Crab Nebula and the Vela Pulsar (the most powerful source so far), have been identified, alongside an overall diffuse gamma-ray background along the plane of the Milky Way galaxy. Cosmic radiation with the highest energy triggers electron-photon cascades in the atmosphere, while lower-energy gamma rays are only detectable above it. Gamma-ray bursts, like GRB 190114C, are transient phenomena challenging our understanding of high-energy astrophysical processes, ranging from microseconds to several hundred seconds.

↑ Return to Menu

Crab Nebula in the context of Pulsar wind nebula

A pulsar wind nebula (PWN, plural PWNe), sometimes called a plerion (derived from the Greek "πλήρης", pleres, meaning "full"), is a type of nebula sometimes found inside the shell of a supernova remnant (SNR), powered by winds generated by a central pulsar. These nebulae were proposed as a class in 1976 as enhancements at radio wavelengths inside supernova remnants. They have since been found to be infrared, optical, millimetre, X-ray and gamma ray sources.

↑ Return to Menu

Crab Nebula in the context of Rayleigh–Taylor instability

The Rayleigh–Taylor instability, or RT instability (after Lord Rayleigh and G. I. Taylor), is an instability of an interface between two fluids of different densities which occurs when the lighter fluid is pushing the heavier fluid. Examples include the behavior of water suspended above oil in the gravity of Earth, mushroom clouds like those from volcanic eruptions and atmospheric nuclear explosions, supernova explosions in which expanding core gas is accelerated into denser shell gas, merging binary quantum fluids in metastable configuration, instabilities in plasma fusion reactors and inertial confinement fusion.

↑ Return to Menu