Covariant derivative in the context of Parallel transport


Covariant derivative in the context of Parallel transport

Covariant derivative Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Covariant derivative in the context of "Parallel transport"


HINT:

πŸ‘‰ Covariant derivative in the context of Parallel transport

In differential geometry, parallel transport (or parallel translation) is a way of transporting geometrical data along smooth curves in a manifold. If the manifold is equipped with an affine connection (a covariant derivative or connection on the tangent bundle), then this connection allows one to transport vectors of the manifold along curves so that they stay parallel with respect to the connection.

The parallel transport for a connection thus supplies a way of, in some sense, moving the local geometry of a manifold along a curve: that is, of connecting the geometries of nearby points. There may be many notions of parallel transport available, but a specification of one way of connecting up the geometries of points on a curve is tantamount to providing a connection. In fact, the usual notion of connection is the infinitesimal analog of parallel transport. Or, vice versa, parallel transport is the local realization of a connection.

↓ Explore More Topics
In this Dossier

Covariant derivative in the context of Connection (mathematics)

In geometry, the notion of a connection makes precise the idea of transporting local geometric objects, such as tangent vectors or tensors in the tangent space, along a curve or family of curves in a parallel and consistent manner. There are various kinds of connections in modern geometry, depending on what sort of data one wants to transport. For instance, an affine connection, the most elementary type of connection, gives a means for parallel transport of tangent vectors on a manifold from one point to another along a curve. An affine connection is typically given in the form of a covariant derivative, which gives a means for taking directional derivatives of vector fields, measuring the deviation of a vector field from being parallel in a given direction.

Connections are of central importance in modern geometry in large part because they allow a comparison between the local geometry at one point and the local geometry at another point. Differential geometry embraces several variations on the connection theme, which fall into two major groups: the infinitesimal and the local theory. The local theory concerns itself primarily with notions of parallel transport and holonomy. The infinitesimal theory concerns itself with the differentiation of geometric data. Thus a covariant derivative is a way of specifying a derivative of a vector field along another vector field on a manifold. A Cartan connection is a way of formulating some aspects of connection theory using differential forms and Lie groups. An Ehresmann connection is a connection in a fibre bundle or a principal bundle by specifying the allowed directions of motion of the field. A Koszul connection is a connection which defines directional derivative for sections of a vector bundle more general than the tangent bundle.

View the full Wikipedia page for Connection (mathematics)
↑ Return to Menu

Covariant derivative in the context of Connection (vector bundle)

In mathematics, and especially differential geometry and gauge theory, a connection on a fiber bundle is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. The most common case is that of a linear connection on a vector bundle, for which the notion of parallel transport must be linear. A linear connection is equivalently specified by a covariant derivative, an operator that differentiates sections of the bundle along tangent directions in the base manifold, in such a way that parallel sections have derivative zero. Linear connections generalize, to arbitrary vector bundles, the Levi-Civita connection on the tangent bundle of a pseudo-Riemannian manifold, which gives a standard way to differentiate vector fields. Nonlinear connections generalize this concept to bundles whose fibers are not necessarily linear.

Linear connections are also called Koszul connections after Jean-Louis Koszul, who gave an algebraic framework for describing them (Koszul 1950).

View the full Wikipedia page for Connection (vector bundle)
↑ Return to Menu

Covariant derivative in the context of Riemann curvature tensor

In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor (after Bernhard Riemann and Elwin Bruno Christoffel) is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold (i.e., it is a tensor field). It is a local invariant of Riemannian metrics that measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.

It is a central mathematical tool in the theory of general relativity, the modern theory of gravity. The curvature of spacetime is in principle observable via the geodesic deviation equation. The curvature tensor represents the tidal force experienced by a rigid body moving along a geodesic in a sense made precise by the Jacobi equation.

View the full Wikipedia page for Riemann curvature tensor
↑ Return to Menu

Covariant derivative in the context of Abstract index notation

Abstract index notation (also referred to as slot-naming index notation) is a mathematical notation for tensors and spinors that uses indices to indicate their types, rather than their components in a particular basis. The indices are mere placeholders, not related to any basis and, in particular, are non-numerical. Thus it should not be confused with the Ricci calculus. The notation was introduced by Roger Penrose as a way to use the formal aspects of the Einstein summation convention to compensate for the difficulty in describing contractions and covariant differentiation in modern abstract tensor notation, while preserving the explicit covariance of the expressions involved.

Let be a vector space, and its dual space. Consider, for example, an order-2 covariant tensor . Then can be identified with a bilinear form on . In other words, it is a function of two arguments in which can be represented as a pair of slots:

View the full Wikipedia page for Abstract index notation
↑ Return to Menu