Copernicus in the context of "List of ancient Greek astronomers"

Play Trivia Questions online!

or

Skip to study material about Copernicus in the context of "List of ancient Greek astronomers"




⭐ Core Definition: Copernicus

Nicolaus Copernicus (19 February 1473 – 24 May 1543) was a Renaissance polymath who formulated a model of the universe that placed the Sun rather than Earth at its center. The publication of Copernicus's model in his book De revolutionibus orbium coelestium (On the Revolutions of the Celestial Spheres), just before his death in 1543, was a major event in the history of science, triggering the Copernican Revolution and making a pioneering contribution to the Scientific Revolution. Though a similar heliocentric model had been developed eighteen centuries earlier by Aristarchus of Samos, an ancient Greek astronomer, Copernicus likely arrived at his model independently.

Copernicus was born and died in Royal Prussia, a semiautonomous and multilingual region created within the Crown of the Kingdom of Poland from lands regained from the Teutonic Order after the Thirteen Years' War.

↓ Menu

In this Dossier

Copernicus in the context of Almagest

The Almagest (/ˈælməɛst/ AL-mə-jest) is a 2nd-century mathematical and astronomical treatise on the apparent motions of the stars and planetary paths, written by Claudius Ptolemy (c. AD 100 – c. 170) in Koine Greek. One of the most influential scientific texts in history, it canonized a geocentric model of the Universe that was accepted for more than 1,200 years from its origin in Hellenistic Alexandria, in the medieval Byzantine and Islamic worlds, and in Western Europe through the Middle Ages and early Renaissance until Copernicus. It is also a key source of information about ancient Greek astronomy.

Ptolemy set up a public inscription at Canopus, Egypt, in 147 or 148. Norman T. Hamilton found that the version of Ptolemy's models set out in the Canopic Inscription was earlier than the version in the Almagest. Hence the Almagest could not have been completed before about 150, a quarter-century after Ptolemy began observing.

↑ Return to Menu

Copernicus in the context of 16th century

The 16th century begins with the Julian year 1501 (MDI) and ends with either the Julian or the Gregorian year 1600 (MDC) (depending on the reckoning used; the Gregorian calendar introduced a lapse of 10 days in October 1582). The Habsburg Spanish Empire, Portuguese Empire, Ottoman Empire, Safavid Persia, Mughal India and Ming China were the most powerful and hegemonic states.

The Renaissance in Italy and Europe saw the emergence of important artists, authors and scientists, and led to the foundation of important subjects which include accounting and political science. Copernicus proposed the heliocentric universe, which was met with strong resistance, and Tycho Brahe refuted the theory of celestial spheres through observational measurement of the 1572 appearance of a Milky Way supernova. These events directly challenged the long-held notion of an immutable universe supported by Ptolemy and Aristotle, and led to major revolutions in astronomy and science. Galileo Galilei became a champion of the new sciences, invented the first thermometer and made substantial contributions in the fields of physics and astronomy, becoming a major figure in the Scientific Revolution in Europe.

↑ Return to Menu

Copernicus in the context of Celestial spheres

The celestial spheres, or celestial orbs, were the fundamental entities of the cosmological models developed by Plato, Eudoxus, Aristotle, Ptolemy, Copernicus, and others. In these celestial models, the apparent motions of the fixed stars and planets are accounted for by treating them as embedded in rotating spheres made of an aetherial, transparent fifth element (quintessence), like gems set in orbs. Since it was believed that the fixed stars were unchanging in their positions relative to one another, it was argued that they must be on the surface of a single starry sphere.

↑ Return to Menu

Copernicus in the context of Hicetas

Hicetas (Ancient Greek: Ἱκέτας or Ἱκέτης; c. 400 – c. 335 BC) was a Greek philosopher of the Pythagorean School. He was born in Syracuse, Magna Graecia. Like his fellow Pythagorean Ecphantus and the Academic Heraclides Ponticus, he believed that the daily movement of permanent stars was caused by the rotation of the Earth around its axis. When Copernicus referred to Nicetus Syracusanus (Nicetus of Syracuse) in De revolutionibus orbium coelestium as having been cited by Cicero as an ancient who also argued that the Earth moved, it is believed that he was actually referring to Hicetas.

Cicero refers to Hicetas in the Academica, volume II, citing in turn Theophrastus. According to Heath:

↑ Return to Menu

Copernicus in the context of Pythagorean astronomical system

An astronomical system positing that the Earth, Moon, Sun, and planets revolve around an unseen "Central Fire" was developed in the fifth century BC and has been attributed to the Pythagorean philosopher Philolaus. The system has been called "the first coherent system in which celestial bodies move in circles", anticipating Copernicus in moving "the earth from the center of the cosmos [and] making it a planet". Although its concepts of a Central Fire distinct from the Sun, and a nonexistent "Counter-Earth" were erroneous, the system contained the insight that "the apparent motion of the heavenly bodies" was (in large part) due to "the real motion of the observer". How much of the system was intended to explain observed phenomena and how much was based on myth, mysticism, and religion is disputed. While the departure from traditional reasoning is impressive, other than the inclusion of the five visible planets, very little of the Pythagorean system is based on genuine observation. In retrospect, Philolaus's views are "less like scientific astronomy than like symbolical speculation."

↑ Return to Menu

Copernicus in the context of Nikolai Lobachevsky

Nikolai Ivanovich Lobachevsky (/lbəˈɛfski/; Russian: Никола́й Ива́нович Лобаче́вский, IPA: [nʲɪkɐˈlaj ɪˈvanəvʲɪtɕ ləbɐˈtɕefskʲɪj] ; 1 December [O.S. 20 November] 1792 – 24 February [O.S. 12 February] 1856) was a Russian mathematician and geometer, known primarily for his work on hyperbolic geometry, otherwise known as Lobachevskian geometry, and also for his fundamental study on Dirichlet integrals, known as the Lobachevsky integral formula.

William Kingdon Clifford called Lobachevsky the "Copernicus of Geometry" due to the revolutionary character of his work.

↑ Return to Menu

Copernicus in the context of Mysterium Cosmographicum

Mysterium Cosmographicum (lit. The Cosmographic Mystery, alternately translated as Cosmic Mystery, The Secret of the World, or some variation) is an astronomy book by the German astronomer Johannes Kepler, published at Tübingen in late 1596 and in a second edition in 1621. Kepler proposed that the distance relationships between the six planets known at that time could be understood in terms of the five Platonic solids, enclosed within a sphere that represented the orbit of Saturn.

This book explains Kepler's cosmological theory, based on the Copernican system, in which the five Platonic solids dictate the structure of the universe and reflect God's plan through geometry. This was virtually the first attempt since Copernicus to say that the theory of heliocentrism is physically true. Thomas Digges had published a defense of Copernicus in an appendix in 1576. According to Kepler's account, he discovered the basis of the model while demonstrating the geometrical relationship between two circles. From this he realized that he had stumbled on a similar ratio to the one between the orbits of Saturn and Jupiter. He wrote, "I believe it was by divine ordinance that I obtained by chance that which previously I could not reach by any pains." But after doing further calculations he realized he could not use two-dimensional polygons to represent all the planets, and instead had to use the five Platonic solids.

↑ Return to Menu