Convergent evolution in the context of Old World vulture


Convergent evolution in the context of Old World vulture

Convergent evolution Study page number 1 of 4

Play TriviaQuestions Online!

or

Skip to study material about Convergent evolution in the context of "Old World vulture"


⭐ Core Definition: Convergent evolution

Convergent evolution is the independent evolution of similar features in species of different periods or epochs in time. Convergent evolution creates analogous structures that have similar form or function but were not present in the last common ancestor of those groups. The cladistic term for the same phenomenon is homoplasy. The recurrent evolution of flight is a classic example, as flying insects, birds, pterosaurs, and bats have independently evolved the useful capacity of flight. Functionally similar features that have arisen through convergent evolution are analogous, whereas homologous structures or traits have a common origin but can have dissimilar functions. Bird, bat, and pterosaur wings are analogous structures, but their forelimbs are homologous, sharing an ancestral state despite serving different functions.

The opposite of convergent evolution is divergent evolution, where related species evolve different traits. Convergent evolution is similar to parallel evolution, which occurs when two independent species evolve in the same direction and thus independently acquire similar characteristics; for instance, gliding frogs have evolved in parallel from multiple types of tree frog.

↓ Menu
HINT:

In this Dossier

Convergent evolution in the context of Tree

In botany, a tree is a perennial plant with an elongated stem, or trunk, usually supporting branches and leaves. In some usages, the definition of a tree may be narrower, e.g., including only woody plants with secondary growth, only plants that are usable as lumber, or only plants above a specified height. Wider definitions include taller palms, tree ferns, bananas, and bamboos.

Trees are not a monophyletic taxonomic group but consist of a wide variety of plant species that have independently evolved a trunk and branches as a way to tower above other plants to compete for sunlight. The majority of tree species are angiosperms or hardwoods; of the rest, many are gymnosperms or softwoods. Trees tend to be long-lived, some trees reaching several thousand years old. Trees evolved around 400 million years ago, and it is estimated that there are around three trillion mature trees in the world currently.

View the full Wikipedia page for Tree
↑ Return to Menu

Convergent evolution in the context of Humanoid

A humanoid (/ˈhjuːmənɔɪd/; from English human and -oid "resembling") is a non-human entity with human form or characteristics. By the 20th century, the term came to describe fossils which were morphologically similar, but not identical, to those of the human skeleton.

Although this usage was common in the sciences for much of the 20th century, it is now considered rare. More generally, the term can refer to anything with distinctly human characteristics or adaptations, such as possessing opposable anterior forelimb-appendages (i.e. thumbs), visible spectrum-binocular vision (i.e. having two eyes), or biomechanic plantigrade-bipedalism (i.e. the ability to walk on heels and metatarsals in an upright position). Humanoids may also include human-animal hybrids (where each cell has partly human and partly animal genetic contents). Science fiction media frequently present sentient extraterrestrial lifeforms as humanoid as a byproduct of convergent evolution.

View the full Wikipedia page for Humanoid
↑ Return to Menu

Convergent evolution in the context of Limb (anatomy)

A limb (from Old English lim, meaning "body part") is a jointed, muscled appendage of a tetrapod vertebrate animal used for weight-bearing, terrestrial locomotion and physical interaction with other objects. The distalmost portion of a limb is known as its extremity. The limbs' bony endoskeleton, known as the appendicular skeleton, is homologous among all tetrapods, who use their limbs for walking, running and jumping, swimming, climbing, grasping, touching and striking.

All tetrapods have four limbs that are organized into two bilaterally symmetrical pairs, with one pair at each end of the torso, which phylogenetically correspond to the four paired fins (pectoral and pelvic fins) of their fish (sarcopterygian) ancestors. The cranial pair (i.e. closer to the head) of limbs are known as the forelimbs or front legs, and the caudal pair (i.e. closer to the tail or coccyx) are the hindlimbs or back legs. In animals with a more erect bipedal posture (mainly hominid primates, particularly humans), the forelimbs and hindlimbs are often called upper and lower limbs, respectively. The fore-/upper limbs are connected to the thoracic cage via the pectoral/shoulder girdles, and the hind-/lower limbs are connected to the pelvis via the hip joints. Many animals, especially the arboreal species, have prehensile forelimbs adapted for grasping and climbing, while some (mostly primates) can also use hindlimbs for grasping. Some animals (birds and bats) have expanded forelimbs (and sometimes hindlimbs as well) with specialized feathers or membranes to achieve lift and fly. Aquatic and semiaquatic tetrapods usually have limb features (such as webbings) adapted to better provide propulsion in water, while marine mammals and sea turtles have convergently evolved flattened, paddle-like limbs known as flippers.

View the full Wikipedia page for Limb (anatomy)
↑ Return to Menu

Convergent evolution in the context of Pangolin

Pangolins, sometimes known as scaly anteaters, are mammals of the order Pholidota (/fɒlɪˈdtə/). The one extant family, the Manidae, has three genera: Manis, Phataginus, and Smutsia. Manis comprises four species found in Asia, while Phataginus and Smutsia include two species each, all found in sub-Saharan Africa. These species range in size from 30 to 100 cm (12 to 39 in). Several extinct pangolin species are also known. In September 2023, nine species were reported.

Pangolins have large, protective keratin scales, similar in material to fingernails and toenails, covering their skin; they are the only known mammals with this feature. Depending on the species, they live in hollow trees or burrows. Pangolins are nocturnal, and their diet consists of mainly ants and termites, which they capture using their long tongues. They tend to be solitary animals, meeting only to mate and produce a litter of one to three offspring, which they raise for about two years. Pangolins superficially resemble armadillos, though the two are not closely related; they have undergone convergent evolution.

View the full Wikipedia page for Pangolin
↑ Return to Menu

Convergent evolution in the context of Seabird

Seabirds (also known as marine birds) are birds that are adapted to life within the marine environment. While seabirds vary greatly in lifestyle, behaviour and physiology, they often exhibit striking convergent evolution, as the same environmental problems and feeding niches have resulted in similar adaptations. The first seabirds evolved in the Cretaceous period, while modern seabird families emerged in the Paleogene.

Seabirds generally live longer, breed later and have fewer young than other birds, but they invest a great deal of time in their young. Most species nest in colonies, varying in size from a few dozen birds to millions. Many species are famous for undertaking long annual migrations, crossing the equator or circumnavigating the Earth in some cases. They feed both at the ocean's surface and below it, and even on each other. Seabirds can be highly pelagic, coastal, or in some cases spend a part of the year away from the sea entirely.

View the full Wikipedia page for Seabird
↑ Return to Menu

Convergent evolution in the context of W. Tecumseh Fitch

William Tecumseh Sherman Fitch III (born 1963) is an American evolutionary biologist and cognitive scientist at the University of Vienna (Vienna, Austria) where he is co-founder of the Department of Cognitive Biology. He was elected a Member of the National Academy of Sciences in 2025.

Fitch studies the biology and evolution of cognition and communication in humans and other animals, and in particular the evolution of speech, language and music. His work concentrates on comparative approaches as advocated by Charles Darwin (i.e., the study of homologous and analogous structures and processes in a wide range of species).

View the full Wikipedia page for W. Tecumseh Fitch
↑ Return to Menu

Convergent evolution in the context of Secondarily aquatic tetrapods

Several groups of tetrapods have undergone secondary aquatic adaptation, an evolutionary transition from being purely terrestrial to living at least partly aquatic. These animals are called "secondarily aquatic" because although all tetrapods descended from freshwater lobe finned fish (see evolution of tetrapods), their more recent ancestors are terrestrial vertebrates that evolved on land for hundreds of millions of years, and their clades only re-adapted to aquatic environment much later.

Unlike primarily aquatic vertebrates (i.e. fish), secondarily aquatic tetrapods (especially aquatic amniotes), while having appendages such as flippers, dorsal fin and tail fins (flukes) that resemble fish fins due to convergent evolution, still have physiology based on their terrestrial ancestry, most notably their air-breathing respiration via lungs (instead of aquatic respiration via gills) and excretion of nitrogenous waste as urea or uric acid (instead of ammonia like most fish). Nearly all extant aquatic tetrapods are secondarily aquatic, with only larval amphibians (tadpoles) being primarily aquatic with gills, and only some species of paedomorphic mole salamanders (most notably the fully aquatic axolotl) retain the gill-based physiology into adulthood.

View the full Wikipedia page for Secondarily aquatic tetrapods
↑ Return to Menu

Convergent evolution in the context of Polyphyly

A polyphyletic group is an assemblage that includes organisms with mixed evolutionary origin but does not include their most recent common ancestor. The term is often applied to groups that share similar features known as homoplasies, which are explained as a result of convergent evolution. The arrangement of the members of a polyphyletic group is called a polyphyly /ˈpɒlɪˌfli/. It is contrasted with monophyly and paraphyly.

For example, the biological characteristic of warm-bloodedness evolved separately in the ancestors of mammals and the ancestors of birds; "warm-blooded animals" is therefore a polyphyletic grouping. Other examples of polyphyletic groups are algae, C4 photosynthetic plants, and edentates.

View the full Wikipedia page for Polyphyly
↑ Return to Menu

Convergent evolution in the context of Monophyletic

In biological cladistics for the classification of organisms, monophyly is the condition of a taxonomic grouping being a clade – that is, a grouping of organisms which meets these criteria:

  1. the grouping contains its own most recent common ancestor (or more precisely an ancestral population), i.e. excludes non-descendants of that common ancestor
  2. the grouping contains all the descendants of that common ancestor, without exception

Monophyly is contrasted with paraphyly and polyphyly as shown in the second diagram. A paraphyletic grouping meets 1. but not 2., thus consisting of the descendants of a common ancestor, excepting one or more monophyletic subgroups. A polyphyletic grouping meets neither criterion, and instead serves to characterize convergent relationships of biological features rather than genetic relationships – for example, night-active primates, fruit trees, or aquatic insects. As such, these characteristic features of a polyphyletic grouping are not inherited from a common ancestor, but evolved independently.

View the full Wikipedia page for Monophyletic
↑ Return to Menu

Convergent evolution in the context of Scale (anatomy)

In zoology, a scale (Ancient Greek: λεπίς, romanizedlepís; Latin: squāma) is a small rigid plate made out of keratin that grows out of vertebrate animals' skin to provide protection. In lepidopterans (butterflies and moths), scales are plates on the surface of the insect wing, made out of chitin instead of keratin, and provide coloration. Scales are quite common and have evolved multiple times through convergent evolution, with varying structure and function.

Scales are generally classified as part of an organism's integumentary system. There are various types of scales according to the shape and class of an animal.

View the full Wikipedia page for Scale (anatomy)
↑ Return to Menu

Convergent evolution in the context of Slug

Slug, or land slug, is a common name for any apparently shell-less terrestrial gastropod mollusc. The word slug is also often used as part of the common name of any gastropod mollusc that has no shell, a very reduced shell, or only a small internal shell, particularly sea slugs and semi-slugs (this is in contrast to the common name snail, which applies to gastropods that have a coiled shell large enough that they can fully retract their soft parts into it).

Various taxonomic families of land slugs form part of several quite different evolutionary lineages, which also include snails. Thus, the various families of slugs are not closely related, despite the superficial similarity in overall body form. The shell-less condition has arisen many times independently as an example of convergent evolution, and thus the category "slug" is polyphyletic.

View the full Wikipedia page for Slug
↑ Return to Menu

Convergent evolution in the context of Snake

Snakes are elongated limbless reptiles of the suborder Serpentes (/sɜːrˈpɛntz/). Cladistically squamates, snakes are ectothermic, amniote vertebrates covered in overlapping scales much like other members of the group. Many species of snakes have skulls with several more joints than their lizard ancestors and relatives, enabling them to swallow prey much larger than their heads (cranial kinesis). To accommodate their narrow bodies, snakes' paired organs (such as kidneys) appear one in front of the other instead of side by side, and most only have one functional lung. Some species retain a pelvic girdle with a pair of vestigial claws on either side of the cloaca. Lizards have independently evolved elongate bodies without limbs or with greatly reduced limbs at least twenty-five times via convergent evolution, leading to many lineages of legless lizards. These resemble snakes, but several common groups of legless lizards have eyelids and external ears, which snakes lack, although this rule is not universal (see Amphisbaenia, Dibamidae, and Pygopodidae).

Living snakes are found on every continent except Antarctica, and on most smaller land masses; exceptions include some large islands, such as Ireland, Iceland, Greenland, and the islands of New Zealand, as well as many small islands of the Atlantic and central Pacific oceans. Additionally, sea snakes are widespread throughout the Indian and Pacific oceans. Around thirty families are currently recognized, comprising about 520 genera and about more than 4,170 species. They range in size from the tiny, 10.4 cm-long (4.1 in) Barbados threadsnake to the reticulated python of 6.95 meters (22.8 ft) in length. The fossil species Titanoboa cerrejonensis was 12.8 meters (42 ft) long. Snakes are thought to have evolved from either burrowing or aquatic lizards, perhaps during the Jurassic period, with the earliest known fossils dating to between 143 and 167 Ma ago. The diversity of modern snakes appeared during the Paleocene epoch (c. 66 to 56 Ma ago, after the Cretaceous–Paleogene extinction event). The oldest preserved descriptions of snakes can be found in the Brooklyn Papyrus.

View the full Wikipedia page for Snake
↑ Return to Menu

Convergent evolution in the context of Bird of prey

Birds of prey or predatory birds, also known as raptors, are hypercarnivorous bird species that actively hunt and feed on other vertebrates (mainly mammals, reptiles and smaller birds). In addition to speed and strength, these predators have keen eyesight for detecting prey from a distance or during flight, strong feet with sharp talons for grasping or killing prey, and powerful, curved beaks for tearing off flesh. Although predatory birds primarily hunt live prey, many species (such as fish eagles, vultures and condors) also scavenge and eat carrion.

Although the term "bird of prey" could theoretically be taken to include all birds that actively hunt and eat other animals, ornithologists typically use the narrower definition followed in this page, excluding many piscivorous predators such as storks, cranes, herons, gulls, skuas, penguins, and kingfishers, as well as many primarily insectivorous birds such as nightjars, frogmouths, and some passerines (e.g. shrikes); omnivorous passerine birds such as crows and ravens; and opportunistic predators from predominantly frugivorous or herbivorous ratites such as cassowaries and rheas. Some extinct predatory telluravian birds had talons similar to those of modern birds of prey, including mousebird relatives (Sandcoleidae), and Messelasturidae indicating possible common descent. Some Enantiornithes also had such talons, indicating possible convergent evolution, as enanthiornithines are not considered to be true modern birds.

View the full Wikipedia page for Bird of prey
↑ Return to Menu

Convergent evolution in the context of Lamella (mycology)

In mycology, a lamella (pl.: lamellae), or gill, is a papery hymenophore rib under the cap of some mushroom species, most often agarics. The gills are used by the mushrooms as a means of spore dispersal, and are important for species identification. The attachment of the gills to the stem is classified based on the shape of the gills when viewed from the side, while color, crowding and the shape of individual gills can also be important features. Additionally, gills can have distinctive microscopic or macroscopic features. For instance, Lactarius species typically seep latex from their gills.

It was originally believed that all gilled fungi were Agaricales, but as fungi were studied in more detail, some gilled species were demonstrated not to be. It is now clear that this is a case of convergent evolution (i.e. gill-like structures evolved separately) rather than being an anatomic feature that evolved only once. The apparent reason that various basidiomycetes have evolved gills is that it is the most effective means of increasing the ratio of surface area to mass, which increases the potential for spore production and dispersal.

View the full Wikipedia page for Lamella (mycology)
↑ Return to Menu

Convergent evolution in the context of Takin

The takin (Budorcas taxicolor); /ˈtɑːkɪn/ is a large species of ungulate of the subfamily Caprinae found in the eastern Himalayas. It includes four subspecies, the Mishmi takin (B. t. taxicolor), the golden takin (B. t. bedfordi), the Tibetan (or Sichuan) takin (B. t. tibetana), and the Bhutan takin (B. t. whitei).

Whilst the takin has in the past been placed together with the muskox in the tribe Ovibovini, more recent mitochondrial research shows a closer relationship to Ovis (sheep). Its physical similarity to the muskox is therefore an example of convergent evolution. The takin is the national animal of Bhutan.

View the full Wikipedia page for Takin
↑ Return to Menu