Control character in the context of Character (computer)


Control character in the context of Character (computer)

Control character Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Control character in the context of "Character (computer)"


⭐ Core Definition: Control character

In computing and telecommunications, a control character or non-printing character (NPC) is a code point in a character set that does not represent a written character or symbol. They are used as in-band signaling to cause effects other than the addition of a symbol to the text. All other characters are mainly graphic characters, also known as printing characters (or printable characters), except perhaps for "space" characters. In the ASCII standard there are 33 control characters, such as code 7, BEL, which might ring a bell.

↓ Menu
HINT:

In this Dossier

Control character in the context of File format

A file format is the way that information is encoded for storage in a computer file. It may describe the encoding at various levels of abstraction including low-level bit and byte layout as well high-level organization such as markup and tabular structure. A file format may be standarized (which can be proprietary or open) or it can be an ad hoc convention.

Some file formats are designed for very particular types of data: PNG files, for example, store bitmapped images using lossless data compression. Other file formats, however, are designed for storage of several different types of data: the Ogg format can act as a container for different types of multimedia including any combination of audio and video, with or without text (such as subtitles), and metadata. A text file can contain any stream of characters, including possible control characters, and is encoded in one of various character encoding schemes. Some file formats, such as HTML, scalable vector graphics, and the source code of computer software are text files with defined syntaxes that allow them to be used for specific purposes.

View the full Wikipedia page for File format
↑ Return to Menu

Control character in the context of Character (computing)

In computing and telecommunications, a character is the encoded representation of a natural language character (including letter, numeral and punctuation), whitespace (space or tab), or a control character (controls computer hardware that consumes character-based data). A sequence of characters is called a string.

Some character encoding systems represent each character using a fixed number of bits whereas other systems use varying sizes. Various fixed-length sizes were used for now obsolete systems such as the six-bit character code, the five-bit Baudot code and even 4-bit systems (with only 16 possible values). The more modern ASCII system uses the 8-bit byte for each character. Today, the Unicode-based UTF-8 encoding uses a varying number of byte-sized code units to define a code point which combine to encode a character.

View the full Wikipedia page for Character (computing)
↑ Return to Menu

Control character in the context of Character encoding

Character encoding is a convention of using a numeric value to represent each character of a writing script. Not only can a character set include natural language symbols, but it can also include codes that have meanings or functions outside of language, such as control characters and whitespace. Character encodings have also been defined for some constructed languages. When encoded, character data can be stored, transmitted, and transformed by a computer. The numerical values that make up a character encoding are known as code points and collectively comprise a code space or a code page.

Early character encodings that originated with optical or electrical telegraphy and in early computers could only represent a subset of the characters used in languages, sometimes restricted to upper case letters, numerals and limited punctuation. Over time, encodings capable of representing more characters were created, such as ASCII, ISO/IEC 8859, and Unicode encodings such as UTF-8 and UTF-16.

View the full Wikipedia page for Character encoding
↑ Return to Menu

Control character in the context of Script (Unicode)

In Unicode, a script is a collection of letters and other written signs used to represent textual information in one or more writing systems. Some scripts support only one writing system and language, for example, Armenian. Other scripts support many different writing systems; for example, the Latin script supports English, French, German, Italian, Vietnamese, Latin itself, and several other languages. Some languages make use of multiple alternate writing systems and thus also use several scripts; for example, in Turkish, the Arabic script was used before the 20th century but transitioned to Latin in the early part of the 20th century. More or less complementary to scripts are symbols and Unicode control characters.

The unified diacritical characters and unified punctuation characters frequently have the "common" or "inherited" script property. However, the individual scripts often have their own punctuation and diacritics, so that many scripts include not only letters but also diacritic and other marks, punctuation, numerals and even their own idiosyncratic symbols and space characters.

View the full Wikipedia page for Script (Unicode)
↑ Return to Menu

Control character in the context of ASCII

ASCII (/ˈæski/ ASS-kee), an acronym for American Standard Code for Information Interchange, is a character encoding standard for representing a particular set of 95 (English language focused) printable and 33 control characters – a total of 128 code points. The set of available punctuation had significant impact on the syntax of computer languages and text markup. ASCII hugely influenced the design of character sets used by modern computers; for example, the first 128 code points of Unicode are the same as ASCII.

ASCII encodes each code-point as a value from 0 to 127 – storable as a seven-bit integer. Ninety-five code-points are printable, including digits 0 to 9, lowercase letters a to z, uppercase letters A to Z, and commonly used punctuation symbols. For example, the letter i is represented as 105 (decimal). Also, ASCII specifies 33 non-printing control codes which originated with Teletype devices; most of which are now obsolete. The control characters that are still commonly used include carriage return, line feed, and tab.

View the full Wikipedia page for ASCII
↑ Return to Menu

Control character in the context of Newline

A newline (frequently called line ending, end of line (EOL), next line (NEL) or line break) is a control character or sequence of control characters in character encoding specifications such as ASCII, EBCDIC, Unicode, etc. A newline is used to signify the end of a line of text and the start of a new one.

View the full Wikipedia page for Newline
↑ Return to Menu

Control character in the context of Code page

In computing, a code page is a character encoding and as such it is a specific association of a set of printable characters and control characters with unique numbers. Typically each number represents the binary value in a single byte. (In some contexts these terms are used more precisely; see Character encoding § Terminology.)

The term "code page" originated from IBM's EBCDIC-based mainframe systems, but Microsoft, SAP, and Oracle Corporation are among the vendors that use this term. The majority of vendors identify their own character sets by a name. In the case when there is a plethora of character sets (like in IBM), identifying character sets through a number is a convenient way to distinguish them. Originally, the code page numbers referred to the page numbers in the IBM standard character set manual, a condition which has not held for a long time. Vendors that use a code page system allocate their own code page number to a character encoding, even if it is better known by another name; for example, UTF-8 has been assigned page numbers 1208 at IBM, 65001 at Microsoft, and 4110 at SAP.

View the full Wikipedia page for Code page
↑ Return to Menu

Control character in the context of Carriage return

A carriage return, sometimes known as a cartridge return and often shortened to CR, <CR> or return, is a control character or mechanism used to reset a device's position to the beginning of a line of text. It is closely associated with the line feed and newline concepts, although it can be considered separately in its own right.

View the full Wikipedia page for Carriage return
↑ Return to Menu

Control character in the context of Graphic character

A graphic character, also known as a printing character or a printable character, is a grapheme intended to be rendered in a form that can be read by a human. In other words, it is any encoded character that is associated with one or more glyphs. (It is thus distinct from a control character, one that is acted upon and not displayed.)

View the full Wikipedia page for Graphic character
↑ Return to Menu

Control character in the context of Bell character

A bell character (sometimes bell code) is a device control code originally sent to ring a small electromechanical bell on tickers and other teleprinters and teletypewriters to alert operators at the other end of the line, often of an incoming message. Though tickers punched the bell codes into their tapes, printers generally do not print a character when the bell code is received. Bell codes are usually represented by the label BEL. They have been used since 1870 (initially in the Baudot code).

To maintain backward compatibility, video display terminals (VDTs) that replaced teletypewriters included speakers or buzzers to perform the same function, as did the personal computers that followed. Modern terminal emulators often integrate the warnings to the desktop environment (e.g., the macOS Terminal will play the system warning sound) and also often offer a silent visual bell feature that flashes the terminal window briefly.

View the full Wikipedia page for Bell character
↑ Return to Menu

Control character in the context of Escape character

In computing and telecommunications, an escape character is a character (more specifically a metacharacter) that, based on a contextual convention, specifies an alternative interpretation of the sequence of characters that follow it. The escape character plus the characters that follow it to form a syntactic unit is called an escape sequence. A convention can define any particular character code as a sequence prefix. Some conventions use a normal, printable character such as backslash (\) or ampersand (&). Others use a non-printable (a.k.a. control) character such as ASCII escape.

In telecommunications, an escape character is used to indicate that the following characters are encoded differently. This is used to alter control characters that would otherwise be noticed and acted on by the underlying telecommunications hardware, such as illegal characters. In this context, the use of an escape character is sometimes referred to as quoting.

View the full Wikipedia page for Escape character
↑ Return to Menu

Control character in the context of Telegraph code

A telegraph code is one of the character encodings used to transmit information by telegraphy. Morse code is the best-known such code. Telegraphy usually refers to the electrical telegraph, but telegraph systems using the optical telegraph were in use before that. A code consists of a number of code points, each corresponding to a letter of the alphabet, a numeral, or some other character. In codes intended for machines rather than humans, code points for control characters, such as carriage return, are required to control the operation of the mechanism. Each code point is made up of a number of elements arranged in a unique way for that character. There are usually two types of element (a binary code), but more element types were employed in some codes not intended for machines. For instance, American Morse code had about five elements, rather than the two (dot and dash) of International Morse Code.

Codes meant for human interpretation were designed so that the characters that occurred most often had the fewest elements in the corresponding code point. For instance, Morse code for E, the most common letter in English, is a single dot ( ▄ ), whereas Q is  ▄▄▄ ▄▄▄ ▄ ▄▄▄ . These arrangements meant the message could be sent more quickly and it would take longer for the operator to become fatigued. Telegraphs were always operated by humans until late in the 19th century. When automated telegraph messages came in, codes with variable-length code points were inconvenient for machine design of the period. Instead, codes with a fixed length were used. The first of these was the Baudot code, a five-bit code. Baudot has only enough code points to print in upper case. Later codes had more bits (ASCII has seven) so that both upper and lower case could be printed. Beyond the telegraph age, modern computers require a very large number of code points (Unicode has 21 bits) so that multiple languages and alphabets (character sets) can be handled without having to change the character encoding. Modern computers can easily handle variable-length codes such as UTF-8 and UTF-16 which have now become ubiquitous.

View the full Wikipedia page for Telegraph code
↑ Return to Menu