Constructive proof in the context of "Realizability"


Constructive proof in the context of "Realizability"

Constructive proof Study page number 1 of 1

Answer the Constructive Proof Trivia Question!

or

Skip to study material about Constructive proof in the context of "Realizability"


⭐ Core Definition: Constructive proof

In mathematics, a constructive proof is a method of proof that demonstrates the existence of a mathematical object by creating or providing a method for creating the object. This is in contrast to a non-constructive proof (also known as an existence proof or pure existence theorem), which proves the existence of a particular kind of object without providing an example. For avoiding confusion with the stronger concept that follows, such a constructive proof is sometimes called an effective proof.

A constructive proof may also refer to the stronger concept of a proof that is valid in constructive mathematics.Constructivism is a mathematical philosophy that rejects all proof methods that involve the existence of objects that are not explicitly built. This excludes, in particular, the use of the law of the excluded middle, the axiom of infinity, and the axiom of choice. Constructivism also induces a different meaning for some terminology (for example, the term "or" has a stronger meaning in constructive mathematics than in classical).

↓ Menu
HINT:

👉 Constructive proof in the context of Realizability

In mathematical logic, realizability is a collection of methods in proof theory used to study constructive proofs and extract additional information from them. Formulas from a formal theory are "realized" by objects, known as "realizers", in a way that knowledge of the realizer gives knowledge about the truth of the formula. There are many variations of realizability; exactly which class of formulas is studied and which objects are realizers differ from one variation to another.

Realizability can be seen as a formalization of the Brouwer–Heyting–Kolmogorov (BHK) interpretation of intuitionistic logic. In realizability the notion of "proof" (which is left undefined in the BHK interpretation) is replaced with a formal notion of "realizer". Most variants of realizability begin with a theorem that any statement that is provable in the formal system being studied is realizable. The realizer, however, usually gives more information about the formula than a formal proof would directly provide.

↓ Explore More Topics
In this Dossier