Cone (geometry) in the context of "Collet"

Play Trivia Questions online!

or

Skip to study material about Cone (geometry) in the context of "Collet"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Cone (geometry) in the context of Collet

A collet /ˈkɒlɪt/ is a segmented sleeve, band or collar. One of the two radial surfaces of a collet is usually tapered (i.e a truncated cone) and the other is cylindrical. The term collet commonly refers to a type of chuck that uses collets to hold either a workpiece or a tool (such as a drill), but collets have other mechanical applications.

An external collet is a sleeve with a cylindrical inner surface and a conical outer surface. The collet can be squeezed against a matching taper such that its inner surface contracts to a slightly smaller diameter, squeezing the tool or workpiece to hold it securely. Most often the collet is made of spring steel, with one or more kerf cuts along its length to allow it to expand and contract. This type of collet holds the external surface of the tool or workpiece being clamped. This is the most usual type of collet chuck. An external collet clamps against the internal surface or bore of a hollow cylinder. The collet's taper is internal and the collet expands when a corresponding taper is drawn or forced into the collet's internal taper.

↓ Explore More Topics
In this Dossier

Cone (geometry) in the context of Precession of the equinoxes

In astronomy, axial precession is a gravity-induced, slow, and continuous change in the orientation of an astronomical body's rotational axis. In the absence of precession, the astronomical body's orbit would show axial parallelism. In particular, axial precession can refer to the gradual shift in the orientation of Earth's axis of rotation in a cycle of approximately 26,000 years. This is similar to the precession of a spinning top, with the axis tracing out a pair of cones joined at their apices. The term "precession" typically refers only to this largest part of the motion; other changes in the alignment of Earth's axis—nutation and polar motion—are much smaller in magnitude.

Earth's precession was historically called the precession of the equinoxes, because the equinoxes moved westward along the ecliptic relative to the fixed stars, opposite to the yearly motion of the Sun along the ecliptic. Historically, the discovery of the precession of the equinoxes is usually attributed in the West to the 2nd-century-BC astronomer Hipparchus. With improvements in the ability to calculate the gravitational force between planets during the first half of the nineteenth century, it was recognized that the ecliptic itself moved slightly, which was named planetary precession, as early as 1863, while the dominant component was named lunisolar precession. Their combination was named general precession, instead of precession of the equinoxes.

↑ Return to Menu

Cone (geometry) in the context of Hyperbola

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. (The other conic sections are the parabola and the ellipse. A circle is a special case of an ellipse.) If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.

Besides being a conic section, a hyperbola can arise as the locus of points whose difference of distances to two fixed foci is constant, as a curve for each point of which the rays to two fixed foci are reflections across the tangent line at that point, or as the solution of certain bivariate quadratic equations such as the reciprocal relationship In practical applications, a hyperbola can arise as the path followed by the shadow of the tip of a sundial's gnomon, the shape of an open orbit such as that of a celestial object exceeding the escape velocity of the nearest gravitational body, or the scattering trajectory of a subatomic particle, among others.

↑ Return to Menu

Cone (geometry) in the context of Apex (geometry)

In geometry, an apex (pl.: apices) is the vertex which is in some sense the "highest" of the figure to which it belongs. The term is typically used to refer to the vertex opposite from some "base". The word is derived from the Latin for 'summit, peak, tip, top, extreme end'. The term apex may be used in different contexts:

  • In an isosceles triangle, the apex is the vertex where the two sides of equal length meet, opposite the unequal third side.
↑ Return to Menu

Cone (geometry) in the context of Solid figure

Solid geometry or stereometry is the geometry of three-dimensional Euclidean space (3D space).A solid figure is the region of 3D space bounded by a two-dimensional closed surface; for example, a solid ball consists of a sphere and its interior.

Solid geometry deals with the measurements of volumes of various solids, including pyramids, prisms, cubes (and other polyhedrons), cylinders, cones (including truncated) and other solids of revolution.

↑ Return to Menu

Cone (geometry) in the context of Horn (music)

A horn is any of a family of musical instruments made of a tube, usually made of metal and often curved in various ways, with one narrow end into which the musician blows, and a wide end from which sound emerges. In horns, unlike some other brass instruments such as the trumpet, the bore gradually increases in width through most of its length—that is to say, it is conical rather than cylindrical. In jazz and popular-music contexts, the word may be used loosely to refer to any wind instrument, and a section of brass or woodwind instruments, or a mixture of the two, is called a horn section in these contexts.

↑ Return to Menu

Cone (geometry) in the context of Thectardis

Thectardis avalonensis is a triangular-shaped member of the Ediacaran biota, dating from 574 to 565 million years ago. The organism took the form of an elongated cone with a central depression, and its apex was anchored to the substrate. Sperling et al. (2011) suggest that Thectardis was a sponge, while Antcliffe et al. (2014, 2015) instead suggest that it is the decayed remains of rangeomorphs.

↑ Return to Menu

Cone (geometry) in the context of Volcanic cone

Volcanic cones are among the simplest volcanic landforms. They are built by ejecta from a volcanic vent, piling up around the vent in the shape of a cone with a central crater. Volcanic cones are of different types, depending upon the nature and size of the fragments ejected during the eruption. Types of volcanic cones include stratocones, spatter cones, tuff cones, and cinder cones.

↑ Return to Menu