Conduction electrons in the context of Fermi–Dirac statistics


Conduction electrons in the context of Fermi–Dirac statistics

Conduction electrons Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Conduction electrons in the context of "Fermi–Dirac statistics"


⭐ Core Definition: Conduction electrons

In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states. On a graph of the electronic band structure of a semiconducting material, the valence band is located below the Fermi level, while the conduction band is located above it.

The distinction between the valence and conduction bands is meaningless in metals, because conduction occurs in one or more partially filled bands that take on the properties of both the valence and conduction bands.

↓ Menu
HINT:

In this Dossier

Conduction electrons in the context of Metallic bonding

Metallic bonding is a type of chemical bonding that arises from the electrostatic attractive force between conduction electrons (in the form of an electron cloud of delocalized electrons) and positively charged metal ions. It may be described as the sharing of free electrons among a structure of positively charged ions (cations). Metallic bonding accounts for many physical properties of metals, such as strength, ductility, thermal and electrical resistivity and conductivity, opacity, and lustre.

Metallic bonding is not the only type of chemical bonding a metal can exhibit, even as a pure substance. For example, elemental gallium consists of covalently-bound pairs of atoms in both liquid and solid-state—these pairs form a crystal structure with metallic bonding between them. Another example of a metal–metal covalent bond is the mercurous ion (Hg
2
).

View the full Wikipedia page for Metallic bonding
↑ Return to Menu

Conduction electrons in the context of Amalgam (chemistry)

An amalgam is an alloy of mercury with another metal. It may be a liquid, a soft paste or a solid, depending upon the proportion of mercury. These alloys are formed through metallic bonding, with the electrostatic attractive force of the conduction electrons working to bind all the positively charged metal ions together into a crystal lattice structure. Many metals can form amalgams with mercury, with some notable exceptions including iron, platinum, tungsten, and tantalum. Gold-mercury amalgam is used in the extraction of gold from ore, and dental amalgams are made with metals such as silver, copper, indium, tin and zinc.

View the full Wikipedia page for Amalgam (chemistry)
↑ Return to Menu