Computer science in the context of "Logic"

⭐ In the context of Logic, which aspect differentiates formal logic from informal logic regarding the evaluation of arguments?

Ad spacer

⭐ Core Definition: Computer science

Computer science is the study of computation, information, and automation. Included broadly in the sciences, computer science spans theoretical disciplines (such as algorithms, theory of computation, and information theory) to applied disciplines (including the design and implementation of hardware and software). An expert in the field is known as a computer scientist.

Algorithms and data structures are central to computer science.The theory of computation concerns abstract models of computation and general classes of problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and preventing security vulnerabilities. Computer graphics and computational geometry address the generation of images. Programming language theory considers different ways to describe computational processes, and database theory concerns the management of repositories of data. Human–computer interaction investigates the interfaces through which humans and computers interact, and software engineering focuses on the design and principles behind developing software. Areas such as operating systems, networks and embedded systems investigate the principles and design behind complex systems. Computer architecture describes the construction of computer components and computer-operated equipment. Artificial intelligence and machine learning aim to synthesize goal-orientated processes such as problem-solving, decision-making, environmental adaptation, planning and learning found in humans and animals. Within artificial intelligence, computer vision aims to understand and process image and video data, while natural language processing aims to understand and process textual and linguistic data.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Computer science in the context of Logic

Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. Informal logic examines arguments expressed in natural language whereas formal logic uses formal language. When used as a countable noun, the term "a logic" refers to a specific logical formal system that articulates a proof system. Logic plays a central role in many fields, such as philosophy, mathematics, computer science, and linguistics.

Logic studies arguments, which consist of a set of premises that leads to a conclusion. An example is the argument from the premises "it's Sunday" and "if it's Sunday then I don't have to work" leading to the conclusion "I don't have to work." Premises and conclusions express propositions or claims that can be true or false. An important feature of propositions is their internal structure. For example, complex propositions are made up of simpler propositions linked by logical vocabulary like (and) or (if...then). Simple propositions also have parts, like "Sunday" or "work" in the example. The truth of a proposition usually depends on the meanings of all of its parts. However, this is not the case for logically true propositions. They are true only because of their logical structure independent of the specific meanings of the individual parts.

↓ Explore More Topics
In this Dossier

Computer science in the context of Hierarchical

A hierarchy (from Greek: áŒ±Î”ÏÎ±ÏÏ‡ÎŻÎ±, hierarkhia, 'rule of a high priest', from hierarkhes, 'president of sacred rites') is an arrangement of items (objects, names, values, categories, etc.) that are represented as being "above", "below", or "at the same level as" one another. Hierarchy is an important concept in a wide variety of fields, such as architecture, philosophy, design, mathematics, computer science, organizational theory, systems theory, systematic biology, and the social sciences (especially political science).

A hierarchy can link entities either directly or indirectly, and either vertically or diagonally. The only direct links in a hierarchy are to one's immediate superior or subordinate. Hierarchical links can extend "vertically" upwards or downwards via multiple links in the same direction, following a path. All parts of the hierarchy that are not linked vertically to one another can also be "horizontally" linked through a path by traveling up the hierarchy to find a common direct or indirect superior, and then down again. This is a system of co-workers or colleagues; each reports to a common superior, but they have the same relative amount of authority. Organizational forms exist that are both alternative and complementary to hierarchy. Heterarchy is one such form.

↑ Return to Menu

Computer science in the context of Academic discipline

An academic discipline or academic field is a subdivision of knowledge that is taught and researched at the college or university level. Disciplines are defined (in part) and recognized by the academic journals in which research is published, and the learned societies and academic departments or faculties within colleges and universities to which their practitioners belong. Academic disciplines are conventionally divided into the humanities (including philosophy, language, art and cultural studies), the scientific disciplines (such as physics, chemistry, and biology); and the formal sciences like mathematics and computer science. The social sciences are sometimes considered a fourth category. It is also known as a field of study, field of inquiry, research field and branch of knowledge. The different terms are used in different countries and fields.

Individuals associated with academic disciplines are commonly referred to as experts or specialists. Others, who may have studied liberal arts or systems theory rather than concentrating in a specific academic discipline, are classified as generalists.

↑ Return to Menu

Computer science in the context of Structure

A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Physical structures include artifacts and objects such as buildings and machines and natural objects such as biological organisms, minerals and chemicals. Abstract structures include data structures in computer science and musical form. Types of structure include a hierarchy (a cascade of one-to-many relationships), a network featuring many-to-many links, or a lattice featuring connections between components that are neighbors in space.

↑ Return to Menu

Computer science in the context of Denotation

In philosophy and linguistics, the denotation of a word or expression is its strictly literal meaning. For instance, the English word "warm" denotes the property of having high temperature. Denotation is contrasted with other aspects of meaning, in particular connotation. For instance, the word "warm" may evoke calmness, coziness, or kindness (as in the warmth of someone's personality) but these associations are not part of the word's denotation. Similarly, an expression's denotation is separate from pragmatic inferences it may trigger. For instance, describing something as "warm" often implicates that it is not hot, but this is once again not part of the word's denotation.

Denotation plays a major role in several fields. Within semantics and philosophy of language, denotation is studied as an important aspect of meaning. In mathematics and computer science, assignments of denotations are assigned to expressions are a crucial step in defining interpreted formal languages. The main task of formal semantics is to reverse engineer the computational system which assigns denotations to expressions of natural languages.

↑ Return to Menu

Computer science in the context of Formal language

In logic, mathematics, computer science, and linguistics, a formal language is a set of strings whose symbols are taken from a set called "alphabet".

The alphabet of a formal language consists of symbols that concatenate into strings (also called "words"). Words that belong to a particular formal language are sometimes called well-formed words. A formal language is often defined by means of a formal grammar such as a regular grammar or context-free grammar.

↑ Return to Menu

Computer science in the context of Natural language processing

Natural language processing (NLP) is the processing of natural language information by a computer. The study of NLP, a subfield of computer science, is generally associated with artificial intelligence. NLP is related to information retrieval, knowledge representation, computational linguistics, and more broadly with linguistics.

Major processing tasks in an NLP system include: speech recognition, text classification, natural language understanding, and natural language generation.

↑ Return to Menu

Computer science in the context of Hilary Putnam

Hilary Whitehall Putnam (/ˈpʌtnəm/; July 31, 1926 – March 13, 2016) was an American philosopher, mathematician, computer scientist, and figure in analytic philosophy in the second half of the 20th century. He contributed to the studies of philosophy of mind, philosophy of language, philosophy of mathematics, and philosophy of science. Outside philosophy, Putnam contributed to mathematics and computer science. Together with Martin Davis he developed the Davis–Putnam algorithm for the Boolean satisfiability problem and he helped demonstrate the unsolvability of Hilbert's tenth problem.

Putnam applied equal scrutiny to his own philosophical positions as to those of others, subjecting each position to rigorous analysis until he exposed its flaws. As a result, he acquired a reputation for frequently changing his positions. In philosophy of mind, Putnam argued against the type-identity of mental and physical states based on his hypothesis of the multiple realizability of the mental, and for the concept of functionalism, an influential theory regarding the mind–body problem. Putnam also originated the computational theory of mind. In philosophy of language, along with Saul Kripke and others, he developed the causal theory of reference, and formulated an original theory of meaning, introducing the notion of semantic externalism based on a thought experiment called Twin Earth.

↑ Return to Menu