Computer memory in the context of Computer bus


Computer memory in the context of Computer bus

Computer memory Study page number 1 of 5

Play TriviaQuestions Online!

or

Skip to study material about Computer memory in the context of "Computer bus"


⭐ Core Definition: Computer memory

Computer memory stores information, such as data and programs, for immediate use in the computer. The term memory is often synonymous with the terms RAM, main memory, or primary storage. Archaic synonyms for main memory include core (for magnetic core memory) and store.

Main memory operates at a high speed compared to mass storage which is slower but less expensive per bit and higher in capacity. Besides storing opened programs and data being actively processed, computer memory serves as a mass storage cache and write buffer to improve both reading and writing performance. Operating systems typically borrow RAM capacity for caching so long as it is not needed by running software. If needed, contents of the computer memory can be transferred to storage; a common way of doing this is through a memory management technique called virtual memory.

↓ Menu
HINT:

In this Dossier

Computer memory in the context of Embedded system

An embedded system is a specialized computer system—a combination of a computer processor, computer memory, and input/output peripheral devices—that has a dedicated function within a larger mechanical or electronic system. It is embedded as part of a complete device often including electrical or electronic hardware and mechanical parts. Because an embedded system typically controls physical operations of the machine that it is embedded within, it often has real-time computing constraints. Embedded systems control many devices in common use. In 2009, it was estimated that ninety-eight percent of all microprocessors manufactured were used in embedded systems.

Modern embedded systems are often based on microcontrollers (i.e. microprocessors with integrated memory and peripheral interfaces), but ordinary microprocessors (using external chips for memory and peripheral interface circuits) are also common, especially in more complex systems. In either case, the processor(s) used may be types ranging from general purpose to those specialized in a certain class of computations, or even custom designed for the application at hand. A common standard class of dedicated processors is the digital signal processor (DSP).

View the full Wikipedia page for Embedded system
↑ Return to Menu

Computer memory in the context of Mainframe computer

A mainframe computer, informally called a mainframe, maxicomputer, or big iron, is a computer used primarily by large organizations for critical applications like bulk data processing for tasks such as censuses, industry and consumer statistics, enterprise resource planning, and large-scale transaction processing. A mainframe computer is large but not as large as a supercomputer and has more processing power than some other classes of computers, such as minicomputers, workstations, and personal computers. Most large-scale computer-system architectures were established in the 1960s, but they continue to evolve. Mainframe computers are often used as servers.

The term mainframe was derived from the large cabinet, called a main frame, that housed the central processing unit and main memory of early computers. Later, the term mainframe was used to distinguish high-end commercial computers from less powerful machines.

View the full Wikipedia page for Mainframe computer
↑ Return to Menu

Computer memory in the context of Instruction set architecture

An instruction set architecture (ISA) is an abstract model that defines the programmable interface of the CPU of a computer; how software can control a computer. A device (i.e. CPU) that interprets instructions described by an ISA is an implementation of that ISA. Generally, the same ISA is used for a family of related CPU devices.

In general, an ISA defines the instructions, data types, registers, and the programming interface for managing main memory such as addressing modes, virtual memory, and memory consistency mechanisms. The ISA also includes the input/output model of the programmable interface.

View the full Wikipedia page for Instruction set architecture
↑ Return to Menu

Computer memory in the context of Contract manufacturing

A contract manufacturer (CM) produces goods under contract for an outsourcing company under the label or brand name of that company. If the good is a complete product, rather than product component(s), the CM may be termed a turnkey supplier. A contract manufacturer performing packaging operations is called copacker or a contract packager. Brand name companies focus on product innovation, design and sales, while the manufacturing takes place in independent factories (the turnkey suppliers).

Most turnkey suppliers specialize in simply manufacturing physical products, but some are also able to handle a significant part of the design and customization process if needed. Some turnkey suppliers specialize in one base component (e.g. memory chips) or a base process (e.g. plastic molding).

View the full Wikipedia page for Contract manufacturing
↑ Return to Menu

Computer memory in the context of Williams tube

The Williams tube, or the Williams–Kilburn tube named after British inventors Freddie Williams and Tom Kilburn, is an early form of computer memory. It was the first random-access digital storage device, and was used successfully in several early computers.

The Williams tube works by displaying a grid of dots on a cathode-ray tube (CRT). Due to the way CRTs work, this creates a small charge of static electricity over each dot. The charge at the location of each of the dots is read by a thin metal sheet just in front of the display. Since the display faded over time, it was periodically refreshed. It operates faster than earlier acoustic delay-line memory, at the speed of the electrons inside the vacuum tube, rather than at the speed of sound. The system was adversely affected by nearby electrical fields, and required frequent adjustment to remain operational. Williams–Kilburn tubes were used primarily on high-speed computer designs.

View the full Wikipedia page for Williams tube
↑ Return to Menu

Computer memory in the context of Desktop computer

A desktop computer, often abbreviated as desktop, is a personal computer designed for regular use at a stationary location on or near a desk (as opposed to a portable computer) due to its size and power requirements. The most common configuration has a case that houses the power supply, motherboard (a printed circuit board with a microprocessor as the central processing unit, memory, bus, certain peripherals and other electronic components), disk storage (usually one or more hard disk drives, solid-state drives, optical disc drives, and in early models floppy disk drives); a keyboard and mouse for input; and a monitor, speakers, and, often, a printer for output. The case may be oriented horizontally or vertically and placed either underneath, beside, or on top of a desk.

Desktop computers with their cases oriented vertically are referred to as towers. As the majority of cases offered since the mid 1990s are in this form factor, the term desktop has been retronymically used to refer to modern cases offered in the traditional horizontal orientation.

View the full Wikipedia page for Desktop computer
↑ Return to Menu

Computer memory in the context of Home computer

Home computers were a class of microcomputers that entered the market in 1977 and became common during the 1980s. They were marketed to consumers as affordable and accessible computers that, for the first time, were intended for the use of a single, non-technical user. These computers were a distinct market segment that typically cost much less than business, scientific, or engineering-oriented computers of the time, such as those running CP/M or the IBM PC, and were generally less powerful in terms of memory and expandability. However, a home computer often had better graphics and sound than contemporary business computers. Their most common uses were word processing, playing video games, and programming.

Home computers were usually sold already manufactured in stylish metal or plastic enclosures. However, some home computers also came as commercial electronic kits, like the Sinclair ZX80, which were both home and home-built computers since the purchaser could assemble the unit from a kit.

View the full Wikipedia page for Home computer
↑ Return to Menu

Computer memory in the context of Digital data storage

Computer data storage or digital data storage is the retention of digital data via technology consisting of computer components and recording media. Digital data storage is a core function and fundamental component of computers.

Generally, the faster and volatile storage components are referred to as "memory", while slower persistent components are referred to as "storage". This distinction was extended in the Von Neumann architecture, where the central processing unit (CPU) consists of two main parts: The control unit and the arithmetic logic unit (ALU). The former controls the flow of data between the CPU and memory, while the latter performs arithmetic and logical operations on data. In practice, almost all computers use a memory hierarchy, which puts memory close to the CPU and storage further away.

View the full Wikipedia page for Digital data storage
↑ Return to Menu

Computer memory in the context of Microprocessor

A microprocessor is a computer processor for which the data processing logic and control is included on a single integrated circuit (IC), or a small number of ICs. The microprocessor contains the arithmetic, logic, and control circuitry required to perform the functions of a computer's central processing unit (CPU). The IC is capable of interpreting and executing program instructions and performing arithmetic operations. The microprocessor is a multipurpose, clock-driven, register-based, digital integrated circuit that accepts binary data as input, processes it according to instructions stored in its memory, and provides results (also in binary form) as output. Microprocessors contain both combinational logic and sequential digital logic, and operate on numbers and symbols represented in the binary number system.

The integration of a whole CPU onto a single or a few integrated circuits using very-large-scale integration (VLSI) greatly reduced the cost of processing power. Integrated circuit processors are produced in large numbers by highly automated metal–oxide–semiconductor (MOS) fabrication processes, resulting in a relatively low unit price. Single-chip processors increase reliability because there are fewer electrical connections that can fail. As microprocessor designs improve, the cost of manufacturing a chip (with smaller components built on a semiconductor chip the same size) generally stays the same, according to Rock's law.

View the full Wikipedia page for Microprocessor
↑ Return to Menu

Computer memory in the context of Microcontroller

A microcontroller (MC, uC, or μC) or microcontroller unit (MCU) is a small computer on a single integrated circuit. A microcontroller contains one or more processor cores along with memory and programmable input/output peripherals. Program memory in the form of NOR flash, OTP ROM, or ferroelectric RAM is also often included on the chip, as well as a small amount of RAM. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general-purpose applications consisting of various discrete chips.

In modern terminology, a microcontroller is similar to, but less sophisticated than, a system on a chip (SoC). A SoC may include a microcontroller as one of its components but usually integrates it with advanced peripherals like a graphics processing unit (GPU), a Wi-Fi module, or one or more coprocessors.

View the full Wikipedia page for Microcontroller
↑ Return to Menu

Computer memory in the context of Memory chip

Semiconductor memory is a digital electronic semiconductor device used for digital data storage, such as computer memory. It typically refers to devices in which data is stored within metal–oxide–semiconductor (MOS) memory cells on a silicon integrated circuit memory chip. There are numerous different types using different semiconductor technologies. The two main types of random-access memory (RAM) are static RAM (SRAM), which uses several transistors per memory cell, and dynamic RAM (DRAM), which uses a transistor and a MOS capacitor per cell. Non-volatile memory (such as EPROM, EEPROM and flash memory) uses floating-gate memory cells, which consist of a single floating-gate transistor per cell.

Most types of semiconductor memory have the property of random access, which means that it takes the same amount of time to access any memory location, so data can be efficiently accessed in any random order. This contrasts with data storage media such as CDs which read and write data consecutively and therefore the data can only be accessed in the same sequence it was written. Semiconductor memory also has much faster access times than other types of data storage; a byte of data can be written to or read from semiconductor memory within a few nanoseconds, while access time for rotating storage such as hard disks is in the range of milliseconds. For these reasons it is used for primary storage, to hold the program and data the computer is currently working on, among other uses.

View the full Wikipedia page for Memory chip
↑ Return to Menu

Computer memory in the context of Byte

The byte is a unit of digital information that most commonly consists of eight bits. Historically, the byte was the number of bits used to encode a single character of text in a computer and for this reason it is the smallest addressable unit of memory in many computer architectures. To disambiguate arbitrarily sized bytes from the common 8-bit definition, network protocol documents such as the Internet Protocol (RFC 791) refer to an 8-bit byte as an octet. Those bits in an octet are usually counted with numbering from 0 to 7 or 7 to 0 depending on the bit endianness.

The size of the byte has historically been hardware-dependent and no definitive standards existed that mandated the size. Sizes from 1 to 48 bits have been used. The six-bit character code was an often-used implementation in early encoding systems, and computers using six-bit and nine-bit bytes were common in the 1960s. These systems often had memory words of 12, 18, 24, 30, 36, 48, or 60 bits, corresponding to 2, 3, 4, 5, 6, 8, or 10 six-bit bytes, and persisted, in legacy systems, into the twenty-first century. In this era, bit groupings in the instruction stream were often referred to as syllables or slab, before the term byte became common.

View the full Wikipedia page for Byte
↑ Return to Menu

Computer memory in the context of Framebuffer

A framebuffer (frame buffer, or sometimes framestore) is a portion of random-access memory (RAM) containing a bitmap that drives a video display. It is a memory buffer containing data representing all the pixels in a complete video frame. Modern video cards contain framebuffer circuitry in their cores. This circuitry converts an in-memory bitmap into a video signal that can be displayed on a computer monitor.

In computing, a screen buffer is a part of computer memory used by a computer application for the representation of the content to be shown on the computer display. The screen buffer may also be called the video buffer, the regeneration buffer, or regen buffer for short. Screen buffers should be distinguished from video memory. To this end, the term off-screen buffer is also used.

View the full Wikipedia page for Framebuffer
↑ Return to Menu

Computer memory in the context of Word (computer architecture)

In computing, a word is any processor design's natural unit of data. A word is a fixed-sized datum handled as a unit by the instruction set or the hardware of the processor. The number of bits or digits in a word (the word size, word width, or word length) is an important characteristic of any specific processor design or computer architecture.

The size of a word is reflected in many aspects of a computer's structure and operation; the majority of the registers in a processor are usually word-sized and the largest datum that can be transferred to and from the working memory in a single operation is a word in many (not all) architectures. The largest possible address size, used to designate a location in memory, is typically a hardware word (here, "hardware word" means the full-sized natural word of the processor, as opposed to any other definition used).

View the full Wikipedia page for Word (computer architecture)
↑ Return to Menu

Computer memory in the context of Kernel (operating system)

A kernel is a computer program at the core of a computer's operating system that always has complete control over everything in the system. The kernel is also responsible for preventing and mitigating conflicts between different processes. It is the portion of the operating system code that is always resident in memory and facilitates interactions between hardware and software components. A full kernel controls all hardware resources (e.g. I/O, memory, cryptography) via device drivers, arbitrates conflicts between processes concerning such resources, and optimizes the use of common resources, such as CPU, cache, file systems, and network sockets. On most systems, the kernel is one of the first programs loaded on startup (after the bootloader). It handles the rest of startup as well as memory, peripherals, and input/output (I/O) requests from software, translating them into data-processing instructions for the central processing unit.

The critical code of the kernel is usually loaded into a separate area of memory, which is protected from access by application software or other less critical parts of the operating system. The kernel performs its tasks, such as running processes, managing hardware devices such as the hard disk, and handling interrupts, in this protected kernel space. In contrast, application programs such as browsers, word processors, or audio or video players use a separate area of memory, user space. This prevents user data and kernel data from interfering with each other and causing instability and slowness, as well as preventing malfunctioning applications from affecting other applications or crashing the entire operating system. Even in systems where the kernel is included in application address spaces, memory protection is used to prevent unauthorized applications from modifying the kernel.

View the full Wikipedia page for Kernel (operating system)
↑ Return to Menu

Computer memory in the context of Bit numbering

In computing, bit numbering is the convention used to identify the bit positions in a binary number. The bits can be those in a memory byte or word, or those of an internal CPU register or data bus.

View the full Wikipedia page for Bit numbering
↑ Return to Menu

Computer memory in the context of Bus (computing)

In computer architecture, a bus (historically also called a data highway or databus) is a communication system that transfers data between components inside a computer or between computers. It encompasses both hardware (e.g., wires, optical fiber) and software, including communication protocols. At its core, a bus is a shared physical pathway, typically composed of wires, traces on a circuit board, or busbars, that allows multiple devices to communicate. To prevent conflicts and ensure orderly data exchange, buses rely on a communication protocol to manage which device can transmit data at a given time.

Buses are categorized based on their role, such as system buses (also known as internal buses, internal data buses, or memory buses) connecting the CPU and memory. Expansion buses, also called peripheral buses, extend the system to connect additional devices, including peripherals. Examples of widely used buses include PCI Express (PCIe) for high-speed internal connections and Universal Serial Bus (USB) for connecting external devices.

View the full Wikipedia page for Bus (computing)
↑ Return to Menu

Computer memory in the context of Memory management

Memory management (also dynamic memory management, dynamic storage allocation, or dynamic memory allocation) is a form of resource management applied to computer memory. The essential requirement of memory management is to provide ways to dynamically allocate portions of memory to programs at their request, and free it for reuse when no longer needed. This is critical to any advanced computer system where more than a single process might be underway (multitasking) at any time.

Several methods have been devised that increase the effectiveness of memory management. Virtual memory systems separate the memory addresses used by a process from actual physical addresses, allowing separation of processes and increasing the size of the virtual address space beyond the available amount of RAM using paging or swapping to secondary storage. The quality of the virtual memory manager can have an extensive effect on overall system performance. The system allows a computer to appear as if it may have more memory available than physically present, thereby allowing multiple processes to share it.

View the full Wikipedia page for Memory management
↑ Return to Menu