Computational finance in the context of Mathematical finance


Computational finance in the context of Mathematical finance

Computational finance Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Computational finance in the context of "Mathematical finance"


HINT:

In this Dossier

Computational finance in the context of Quantitative finance

Mathematical finance, also known as quantitative finance and financial mathematics, is a field of applied mathematics, concerned with mathematical modeling in the financial field.

In general, there exist two separate branches of finance that require advanced quantitative techniques: derivatives pricing on the one hand, and risk and portfolio management on the other.Mathematical finance overlaps heavily with the fields of computational finance and financial engineering. The latter focuses on applications and modeling, often with the help of stochastic asset models, while the former focuses, in addition to analysis, on building tools of implementation for the models. Also related is quantitative investing, which relies on statistical and numerical models (and lately machine learning) as opposed to traditional fundamental analysis when managing portfolios.

View the full Wikipedia page for Quantitative finance
↑ Return to Menu

Computational finance in the context of Numerical linear algebra

Numerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of. Numerical linear algebra uses properties of vectors and matrices to develop computer algorithms that minimize the error introduced by the computer, and is also concerned with ensuring that the algorithm is as efficient as possible.

Numerical linear algebra aims to solve problems of continuous mathematics using finite precision computers, so its applications to the natural and social sciences are as vast as the applications of continuous mathematics. It is often a fundamental part of engineering and computational science problems, such as image and signal processing, telecommunication, computational finance, materials science simulations, structural biology, data mining, bioinformatics, and fluid dynamics. Matrix methods are particularly used in finite difference methods, finite element methods, and the modeling of differential equations. Noting the broad applications of numerical linear algebra, Lloyd N. Trefethen and David Bau, III argue that it is "as fundamental to the mathematical sciences as calculus and differential equations", even though it is a comparatively small field. Because many properties of matrices and vectors also apply to functions and operators, numerical linear algebra can also be viewed as a type of functional analysis which has a particular emphasis on practical algorithms.

View the full Wikipedia page for Numerical linear algebra
↑ Return to Menu