Complex manifold in the context of K3 surface


Complex manifold in the context of K3 surface

Complex manifold Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Complex manifold in the context of "K3 surface"


HINT:

👉 Complex manifold in the context of K3 surface

In mathematics, a complex analytic K3 surface is a compact connected complex manifold of dimension 2 with а trivial canonical bundle and irregularity zero. An (algebraic) K3 surface over any field means a smooth proper geometrically connected algebraic surface that satisfies the same conditions. In the Enriques–Kodaira classification of surfaces, K3 surfaces form one of the four classes of minimal surfaces of Kodaira dimension zero. A simple example is the Fermat quartic surface in complex projective 3-space.

Together with two-dimensional compact complex tori, K3 surfaces are the Calabi–Yau manifolds (and also the hyperkähler manifolds) of dimension two. As such, they are at the center of the classification of algebraic surfaces, between the positively curved del Pezzo surfaces (which are easy to classify) and the negatively curved surfaces of general type (which are essentially unclassifiable). K3 surfaces can be considered the simplest algebraic varieties whose structure does not reduce to curves or abelian varieties, and yet where a substantial understanding is possible. A complex K3 surface has real dimension 4, and it plays an important role in the study of smooth 4-manifolds. K3 surfaces have been applied to Kac–Moody algebras, mirror symmetry and string theory.

↓ Explore More Topics
In this Dossier

Complex manifold in the context of Complex projective plane

In mathematics, the complex projective plane, usually denoted or is the two-dimensional complex projective space. It is a complex manifold of complex dimension 2, described by three complex coordinates

where, however, the triples differing by an overall rescaling are identified:

View the full Wikipedia page for Complex projective plane
↑ Return to Menu

Complex manifold in the context of Complex dimension

In mathematics, complex dimension usually refers to the dimension of a complex manifold or a complex algebraic variety. These are spaces in which the local neighborhoods of points (or of non-singular points in the case of a variety) are modeled on a Cartesian product of the form for some , and the complex dimension is the exponent in this product. Because can in turn be modeled by , a space with complex dimension will have real dimension . That is, a smooth manifold of complex dimension has real dimension ; and a complex algebraic variety of complex dimension , away from any singular point, will also be a smooth manifold of real dimension .

However, for a real algebraic variety (that is a variety defined by equations with real coefficients), its dimension refers commonly to its complex dimension, and its real dimension refers to the maximum of the dimensions of the manifolds contained in the set of its real points. The real dimension is not greater than the dimension, and equals it if the variety is irreducible and has real points that are nonsingular.For example, the equation defines a variety of (complex) dimension 2 (a surface), but of real dimension 0 — it has only one real point, (0, 0, 0), which is singular.

View the full Wikipedia page for Complex dimension
↑ Return to Menu

Complex manifold in the context of Cotangent bundle

In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle. This may be generalized to categories with more structure than smooth manifolds, such as complex manifolds, or (in the form of cotangent sheaf) algebraic varieties or schemes. In the smooth case, any Riemannian metric or symplectic form gives an isomorphism between the cotangent bundle and the tangent bundle, but they are not in general isomorphic in other categories.

View the full Wikipedia page for Cotangent bundle
↑ Return to Menu