Complex frequency in the context of Integral equation


Complex frequency in the context of Integral equation

Complex frequency Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Complex frequency in the context of "Integral equation"


⭐ Core Definition: Complex frequency

In mathematics, the Laplace transform, named after Pierre-Simon Laplace (/ləˈplɑːs/), is an integral transform that converts a function of a real variable (usually , in the time domain) to a function of a complex variable (in the complex-valued frequency domain, also known as s-domain or s-plane). The functions are often denoted using a lowercase symbol for the time-domain function and the corresponding uppercase symbol for the frequency-domain function, e.g. and .

The transform is useful for converting differentiation and integration in the time domain into much easier multiplication and division in the Laplace domain (analogous to how logarithms are useful for simplifying multiplication and division into addition and subtraction). This gives the transform many applications in science and engineering, mostly as a tool for solving linear differential equations and dynamical systems by simplifying ordinary differential equations and integral equations into algebraic polynomial equations, and by simplifying convolution into multiplication.

↓ Menu
HINT:

In this Dossier

Complex frequency in the context of Telegrapher's equations

The telegrapher's equations (or telegraph equations) are a set of two coupled, linear partial differential equations that model voltage and current along a linear electrical transmission line. The equations are important because they allow transmission lines to be analyzed using circuit theory. The equations and their solutions are applicable from 0 Hz (i.e. direct current) to frequencies at which the transmission line structure can support higher order non-TEM modes. The equations can be expressed in both the time domain and the frequency domain. In the time domain the independent variables are distance and time. In the frequency domain the independent variables are distance and either frequency, , or complex frequency, . The frequency domain variables can be taken as the Laplace transform or Fourier transform of the time domain variables or they can be taken to be phasors in which case the frequency domain equations can be reduced to ordinary differential equations of distance. An advantage of the frequency domain approach is that differential operators in the time domain become algebraic operations in frequency domain.

The equations come from Oliver Heaviside who developed the transmission line model starting with an August 1876 paper, On the Extra Current. The model demonstrates that the electromagnetic waves can be reflected on the wire, and that wave patterns can form along the line. Originally developed to describe telegraph wires, the theory can also be applied to radio frequency conductors, audio frequency (such as telephone lines), low frequency (such as power lines), and pulses of direct current.

View the full Wikipedia page for Telegrapher's equations
↑ Return to Menu