Common descent in the context of "History of evolutionary thought"

Play Trivia Questions online!

or

Skip to study material about Common descent in the context of "History of evolutionary thought"

Ad spacer

⭐ Core Definition: Common descent

Common descent is a concept in evolutionary biology applicable when one species is the ancestor of two or more species later in time. According to modern evolutionary biology, all living beings could be descendants of a unique ancestor commonly referred to as the last universal common ancestor (LUCA) of all life on Earth.

Common descent is an effect of speciation, in which multiple species derive from a single ancestral population. The more recent the ancestral population two species have in common, the more closely they are related. The most recent common ancestor of all currently living organisms is the last universal ancestor, which lived about 3.9 billion years ago. The two earliest pieces of evidence for life on Earth are graphite found to be biogenic in 3.7 billion-year-old metasedimentary rocks discovered in western Greenland and microbial mat fossils found in 3.48 billion-year-old sandstone discovered in Western Australia. All currently living organisms on Earth share a common genetic heritage, though the suggestion of substantial horizontal gene transfer during early evolution has led to questions about the monophyly (single ancestry) of life. 6,331 groups of genes common to all living animals have been identified; these may have arisen from a single common ancestor that lived 650 million years ago in the Precambrian.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Common descent in the context of History of evolutionary thought

Evolutionary thought, the recognition that species change over time and the perceived understanding of how such processes work, has roots in antiquity. With the beginnings of modern biological taxonomy in the late 17th century, two opposed ideas influenced Western biological thinking: essentialism, the belief that every species has essential characteristics that are unalterable, a concept which had developed from medieval Aristotelian metaphysics, and that fit well with natural theology; and the development of the new anti-Aristotelian approach to science. Naturalists began to focus on the variability of species; the emergence of palaeontology with the concept of extinction further undermined static views of nature. In the early 19th century prior to Darwinism, Jean-Baptiste Lamarck proposed his theory of the transmutation of species, the first fully formed theory of evolution.

In 1858 Charles Darwin and Alfred Russel Wallace published a new evolutionary theory, explained in detail in Darwin's On the Origin of Species (1859). Darwin's theory, originally called descent with modification, is known contemporarily as Darwinism or Darwinian theory. Unlike Lamarck, Darwin proposed common descent and a branching tree of life, meaning that two very different species could share a common ancestor. Darwin based his theory on the idea of natural selection: it synthesized a broad range of evidence from animal husbandry, biogeography, geology, morphology, and embryology. Debate over Darwin's work led to the rapid acceptance of the general concept of evolution, but the specific mechanism he proposed, natural selection, was not widely accepted until it was revived by developments in biology that occurred during the 1920s through the 1940s. Before that time most biologists regarded other factors as responsible for evolution. Alternatives to natural selection suggested during "the eclipse of Darwinism" (c. 1880 to 1920) included inheritance of acquired characteristics (neo-Lamarckism), an innate drive for change (orthogenesis), and sudden large mutations (saltationism). Mendelian genetics, a series of 19th-century experiments with pea plant variations rediscovered in 1900, was integrated with natural selection by Ronald Fisher, J. B. S. Haldane, and Sewall Wright during the 1910s to 1930s, and resulted in the founding of the new discipline of population genetics. During the 1930s and 1940s population genetics became integrated with other biological fields, resulting in a widely applicable theory of evolution that encompassed much of biology—the modern synthesis.

↓ Explore More Topics
In this Dossier

Common descent in the context of Charles Darwin

Charles Robert Darwin (/ˈdɑːrwɪn/ DAR-win; 12 February 1809 – 19 April 1882) was an English naturalist, geologist, and biologist, widely known for his contributions to evolutionary biology. His proposition that all species of life have descended from a common ancestor is now generally accepted and considered a fundamental scientific concept. In a joint presentation with Alfred Russel Wallace, he introduced his scientific theory that this branching pattern of evolution resulted from a process he called natural selection, in which the struggle for existence has a similar effect to the artificial selection involved in selective breeding. Darwin has been described as one of the most influential figures in human history and was honoured by burial in Westminster Abbey.

Darwin's early interest in nature led him to neglect his medical education at the University of Edinburgh; instead, he helped Grant to investigate marine invertebrates. His studies at the University of Cambridge's Christ's College from 1828 to 1831 encouraged his passion for natural science. However, it was his five-year voyage on HMS Beagle from 1831 to 1836 that truly established Darwin as an eminent geologist. The observations and theories he developed during his voyage supported Charles Lyell's concept of gradual geological change. Publication of his journal of the voyage made Darwin famous as a popular author. His first scientific work was The Structure and Distribution of Coral Reefs (1842). Along with his work on barnacles, it won him the Royal Medal in 1853.

↑ Return to Menu

Common descent in the context of Lineage (anthropology)

In anthropology, a lineage is a unilineal descent group that traces its ancestry to a demonstrably shared ancestor, known as the apical ancestor. Lineages are formed through relationships traced either exclusively through the maternal line (matrilineage), paternal line (patrilineage), or some combination of both (ambilineal). The cultural significance of matrilineal or patrilineal descent varies greatly, shaping social structures, inheritance patterns, and even rituals across societies.

↑ Return to Menu

Common descent in the context of Spontaneous generation

Spontaneous generation is a superseded scientific theory that held that living creatures could arise from non-living matter and that such processes were commonplace and regular. It was hypothesized that certain forms, such as fleas, could arise from inanimate matter such as dust, or that maggots could arise from dead flesh. The doctrine of spontaneous generation was coherently synthesized by the Greek philosopher and naturalist Aristotle, who compiled and expanded the work of earlier natural philosophers and the various ancient explanations for the appearance of organisms. Spontaneous generation was taken as scientific fact for two millennia. Though challenged in the 17th and 18th centuries by the experiments of the Italian biologists Francesco Redi and Lazzaro Spallanzani, it was not discredited until the work of the French chemist Louis Pasteur and the Irish physicist John Tyndall in the mid-19th century.

Among biologists, rejecting spontaneous genesis is no longer controversial. Experiments conducted by Pasteur and others were thought to have refuted the conventional notion of spontaneous generation by the mid-1800s. Since all life appears to have evolved from a single form approximately four billion years ago, attention has instead turned to the origin of life.

↑ Return to Menu

Common descent in the context of On the Origin of Species

On the Origin of Species (or, more completely, On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life) is a work of scientific literature by Charles Darwin that is considered to be the foundation of evolutionary biology. It was published on 24 November 1859. Darwin's book introduced the scientific theory that populations evolve over the course of generations through a process of natural selection, although Lamarckism was also included as a mechanism of lesser importance. The book presented a body of evidence that the diversity of life arose by common descent through a branching pattern of evolution. Darwin included evidence that he had collected on the Beagle expedition in the 1830s and his subsequent findings from research, correspondence, and experimentation.

Various evolutionary ideas had already been proposed to explain new findings in biology. There was growing support for such ideas among dissident anatomists and the general public, but during the first half of the 19th century the English scientific establishment was closely tied to the Church of England, while science was part of natural theology. Ideas about the transmutation of species were controversial as they conflicted with the beliefs that species were unchanging parts of a designed hierarchy and that humans were unique, unrelated to other animals. The political and theological implications were intensely debated, but transmutation was not accepted by the scientific mainstream.

↑ Return to Menu

Common descent in the context of Cladograms

A cladogram (from Greek κλάδος klados "branch" and γραμμα gramma "character") is a diagram used in cladistics to show evolutionary relations (common descent) between groups of organisms. Cladograms are a type (subset) of phylogenetic trees that do not normally show evolutionary time but are required to meet specific criteria defined by cladistics. Like other evolutionary trees, cladograms can be used show actual, hypothesized, or even hypothetical descent. Modern cladograms are most often generated algorithmically through computational phylogenetics using genetic data, typically from DNA sequencing, as part of a molecular systematics approach.

A cladogram uses lines that branch off in different directions ending at a clade, a group of organisms with a last common ancestor. There are many shapes of cladograms but they all have lines that branch off from other lines. The lines can be traced back to where they branch off. These branching off points represent a hypothetical ancestor (not an actual entity) which can be inferred to exhibit the traits shared among the terminal taxa above it. This hypothetical ancestor might then provide clues about the order of evolution of various features, adaptation, and other evolutionary narratives about ancestors.

↑ Return to Menu

Common descent in the context of Bird of prey

Birds of prey or predatory birds, also known as raptors, are hypercarnivorous bird species that actively hunt and feed on other vertebrates (mainly mammals, reptiles and smaller birds). In addition to speed and strength, these predators have keen eyesight for detecting prey from a distance or during flight, strong feet with sharp talons for grasping or killing prey, and powerful, curved beaks for tearing off flesh. Although predatory birds primarily hunt live prey, many species (such as fish eagles, vultures and condors) also scavenge and eat carrion.

Although the term "bird of prey" could theoretically be taken to include all birds that actively hunt and eat other animals, ornithologists typically use the narrower definition followed in this page, excluding many piscivorous predators such as storks, cranes, herons, gulls, skuas, penguins, and kingfishers, as well as many primarily insectivorous birds such as nightjars, frogmouths, and some passerines (e.g. shrikes); omnivorous passerine birds such as crows and ravens; and opportunistic predators from predominantly frugivorous or herbivorous ratites such as cassowaries and rheas. Some extinct predatory telluravian birds had talons similar to those of modern birds of prey, including mousebird relatives (Sandcoleidae), and Messelasturidae indicating possible common descent. Some Enantiornithes also had such talons, indicating possible convergent evolution, as enanthiornithines are not considered to be true modern birds.

↑ Return to Menu

Common descent in the context of Timeline of evolution

The timeline of life represents the current scientific theory outlining the major events during the development of life on Earth. Dates in this article are consensus estimates based on scientific evidence, mainly fossils.

In biology, evolution is any change across successive generations in the heritable characteristics of biological populations. Evolutionary processes give rise to diversity at every level of biological organization, from kingdoms to species, and individual organisms and molecules, such as DNA and proteins. The similarities between all present day organisms imply a common ancestor from which all known species, living and extinct, have diverged. More than 99 percent of all species that ever lived (over five billion) are estimated to be extinct. Estimates on the number of Earth's current species range from 10 million to 14 million, with about 1.2 million or 14% documented, the rest not yet described. However, a 2016 report estimates an additional 1 trillion microbial species, with only 0.001% described.

↑ Return to Menu