Cofactor (biochemistry) in the context of "Enzyme"

Play Trivia Questions online!

or

Skip to study material about Cofactor (biochemistry) in the context of "Enzyme"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Cofactor (biochemistry) in the context of Enzyme

An enzyme is a biological macromolecule, usually a protein, that acts as a biological catalyst, accelerating chemical reactions without being consumed in the process. The molecules on which enzymes act are called substrates, which are converted into products. Nearly all metabolic processes within a cell depend on enzyme catalysis to occur at biologically relevant rates. Metabolic pathways are typically composed of a series of enzyme-catalyzed steps. The study of enzymes is known as enzymology, and a related field focuses on pseudoenzymes—proteins that have lost catalytic activity but may retain regulatory or scaffolding functions, often indicated by alterations in their amino acid sequences or unusual 'pseudocatalytic' behavior.

Enzymes are known to catalyze over 5,000 types of biochemical reactions. Other biological catalysts include catalytic RNA molecules, or ribozymes, which are sometimes classified as enzymes despite being composed of RNA rather than protein. More recently, biomolecular condensates have been recognized as a third category of biocatalysts, capable of catalyzing reactions by creating interfaces and gradients—such as ionic gradients—that drive biochemical processes, even when their component proteins are not intrinsically catalytic.

↓ Explore More Topics
In this Dossier

Cofactor (biochemistry) in the context of Protein

Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity.

A linear chain of amino acid residues is called a polypeptide. A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called peptides. The individual amino acid residues are bonded together by peptide bonds and adjacent amino acid residues. The sequence of amino acid residues in a protein is defined by the sequence of a gene, which is encoded in the genetic code. In general, the genetic code specifies 20 standard amino acids; but in certain organisms the genetic code can include selenocysteine and—in certain archaea—pyrrolysine. Shortly after or even during synthesis, the residues in a protein are often chemically modified by post-translational modification, which alters the physical and chemical properties, folding, stability, activity, and ultimately, the function of the proteins. Some proteins have non-peptide groups attached, which can be called prosthetic groups or cofactors. Proteins can work together to achieve a particular function, and they often associate to form stable protein complexes.

↑ Return to Menu

Cofactor (biochemistry) in the context of Adenine

Adenine (symbol A, or Ade) is a purine nucleotide base that is found in DNA, RNA, and ATP. Usually a white crystalline subtance. The shape of adenine is complementary and pairs to either thymine in DNA or uracil in RNA. In cells adenine, as an independent molecule, is rare. It is almost always covalently bound to become a part of a larger biomolecule.

Adenine has a central role in cellular respiration. It is part of adenosine triphosphate which provides the energy that drives and supports most activities in living cells, such as protein synthesis, chemical synthesis, muscle contraction, and nerve impulse propagation. In respiration it also participates as part of the cofactors nicotinamide adenine dinucleotide, flavin adenine dinucleotide, and Coenzyme A.

↑ Return to Menu

Cofactor (biochemistry) in the context of Zinc

Zinc is a chemical element; it has symbol Zn and atomic number 30. It is a slightly brittle metal at room temperature and has a shiny blue whitish appearance when surface oxidation is removed. It is the first element in group 12 (IIB) of the periodic table. Zinc is the 24th most abundant element in Earth's crust, with an average concentration of 70 grams per ton. Zinc also has five stable isotopes; the most abundant of which, Zn-64, comprises nearly half of zinc's total abundance. In some respects, zinc is chemically similar to magnesium: both elements exhibit only one normal oxidation state (+2), and the Zn and Mg ions are of similar size. The most common zinc ore is sphalerite (zinc blende), a zinc sulfide mineral. The largest concentration of economically feasible lodes in descending order are located in China, Peru, and Australia, among others. Zinc is refined industrially by froth flotation of the ore, roasting, and final extraction using electricity (electrowinning).

Zinc is an essential trace element for humans, animals, plants and for microorganisms and is necessary for both prenatal and postnatal development. It is the second most abundant trace metal in humans after iron, an important cofactor for many enzymes, and the only metal which appears in all enzyme classes. Zinc is also an essential nutrient element for coral growth.

↑ Return to Menu

Cofactor (biochemistry) in the context of Vitamin K

Vitamin K is a family of structurally similar, fat-soluble vitamers found in foods and marketed as dietary supplements. The human body requires vitamin K for post-synthesis modification of certain proteins that are required for blood coagulation ("K" from Danish koagulation, for "coagulation") and for controlling binding of calcium in bones and other tissues. The complete synthesis involves final modification of these so-called "Gla proteins" by the enzyme gamma-glutamyl carboxylase that uses vitamin K as a cofactor.

Vitamin K is used in the liver as the intermediate VKH2 to deprotonate a glutamate residue and then is reprocessed into vitamin K through a vitamin K oxide intermediate. The presence of uncarboxylated proteins indicates a vitamin K deficiency. Carboxylation allows them to bind (chelate) calcium ions, which they cannot do otherwise. Without vitamin K, blood coagulation is seriously impaired, and uncontrolled bleeding occurs. Research suggests that deficiency of vitamin K may also weaken bones, potentially contributing to osteoporosis, and may promote calcification of arteries and other soft tissues.

↑ Return to Menu

Cofactor (biochemistry) in the context of Nicotinamide adenine dinucleotide

Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism. Found in all living cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphate groups. One nucleotide contains an adenine nucleobase and the other, nicotinamide. NAD exists in two forms: an oxidized and reduced form, abbreviated as NAD and NADH (H for hydrogen), respectively.

↑ Return to Menu

Cofactor (biochemistry) in the context of Metabolite

In biochemistry, a metabolite is an intermediate or end product of metabolism.The term is usually used for small molecules. Metabolites have various functions, including fuel, structure, signaling, stimulatory and inhibitory effects on enzymes, catalytic activity of their own (usually as a cofactor to an enzyme), defense, and interactions with other organisms (e.g. pigments, odorants, and pheromones).

A primary metabolite is directly involved in normal "growth", development, and reproduction. Ethylene exemplifies a primary metabolite produced large-scale by industrial microbiology.

↑ Return to Menu

Cofactor (biochemistry) in the context of Sulfur cycle

The sulfur cycle is a biogeochemical cycle in which the sulfur moves between rocks, waterways and living systems. It is important in geology as it affects many minerals and in life because sulfur is an essential element (CHNOPS), being a constituent of many proteins and cofactors, and sulfur compounds can be used as oxidants or reductants in microbial respiration. The global sulfur cycle involves the transformations of sulfur species through different oxidation states, which play an important role in both geological and biological processes.Steps of the sulfur cycle are:

↑ Return to Menu