Clearing the neighbourhood in the context of "Mean motion resonance"

Play Trivia Questions online!

or

Skip to study material about Clearing the neighbourhood in the context of "Mean motion resonance"

Ad spacer

⭐ Core Definition: Clearing the neighbourhood

In celestial mechanics, "clearing the neighbourhood" (or dynamical dominance) around a celestial body's orbit describes the body becoming gravitationally dominant such that there are no other bodies of comparable size other than its natural satellites or those otherwise under its gravitational influence.

"Clearing the neighbourhood" is one of three necessary criteria for a celestial body to be considered a planet in the Solar System, according to the definition adopted in 2006 by the International Astronomical Union (IAU). In 2015, a proposal was made to extend the definition to exoplanets.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Clearing the neighbourhood in the context of IAU definition of planet

The International Astronomical Union (IAU) adopted in August 2006 the definition made by Uruguayan astronomers Julio Ángel Fernández and Gonzalo Tancredi that stated, that in the Solar System, a planet is a celestial body that:

  1. is in orbit around the Sun,
  2. has sufficient mass to assume hydrostatic equilibrium (a nearly round shape), and
  3. has "cleared the neighbourhood" around its orbit.

A non-satellite body fulfilling only the first two of these criteria (such as Pluto, which had hitherto been considered a planet) is classified as a dwarf planet. According to the IAU, "planets and dwarf planets are two distinct classes of objects" – in other words, "dwarf planets" are not planets. A non-satellite body fulfilling only the first criterion is termed a small Solar System body (SSSB). An alternate proposal included dwarf planets as a subcategory of planets, but IAU members voted against this proposal. The decision was a controversial one, and has drawn both support and criticism from astronomers.

↑ Return to Menu

Clearing the neighbourhood in the context of Dwarf planet

A dwarf planet is a small planetary-mass object that is in direct orbit around the Sun, massive enough to be gravitationally rounded, but insufficient to achieve orbital dominance like the eight classical planets of the Solar System. The prototypical dwarf planet is Pluto, which for decades was regarded as a planet before the "dwarf" concept was adopted in 2006.Many planetary geologists consider dwarf planets and planetary-mass moons to be planets, but since 2006 the IAU and many astronomers have excluded them from the roster of planets.

Dwarf planets are capable of being geologically active, an expectation that was borne out in 2015 by the Dawn mission to Ceres and the New Horizons mission to Pluto. Planetary geologists are therefore particularly interested in them.

↑ Return to Menu

Clearing the neighbourhood in the context of Protoplanet

A protoplanet or planetary embryo is an astronomical body originated within a protoplanetary disk that has undergone internal melting to produce a differentiated interior.

Protoplanets are thought to form out of kilometer-sized planetesimals that gravitationally perturb each other's orbits and collide, gradually coalescing into larger bodies through a process known as "runaway growth". Once accumulated enough mass, protoplanets will begin to assume a spherical shape due to hydrostatic equilibrium and become dwarf planets, those of which that subsequently succeed in dominating their own orbit will become planets proper.

↑ Return to Menu

Clearing the neighbourhood in the context of Orbital resonance

In celestial mechanics, orbital resonance occurs when orbiting bodies exert regular, periodic gravitational influence on each other, usually because their orbital periods are related by a ratio of small integers. Most commonly, this relationship is found between a pair of objects (binary resonance). The physical principle behind orbital resonance is similar in concept to pushing a child on a swing, whereby the orbit and the swing both have a natural frequency, and the body doing the "pushing" will act in periodic repetition to have a cumulative effect on the motion. Orbital resonances greatly enhance the mutual gravitational influence of the bodies (i.e., their ability to alter or constrain each other's orbits). In most cases, this results in an unstable interaction, in which the bodies exchange momentum and shift orbits until the resonance no longer exists. Under some circumstances, a resonant system can be self-correcting and thus stable. Examples are the 1:2:4 resonance of Jupiter's moons Ganymede, Europa and Io, and the 2:3 resonance between Neptune and Pluto. Unstable resonances with Saturn's inner moons give rise to gaps in the rings of Saturn. The special case of 1:1 resonance between bodies with similar orbital radii causes large planetary system bodies to eject most other bodies sharing their orbits; this is part of the much more extensive process of clearing the neighbourhood, an effect that is used in the current definition of a planet.

A binary resonance ratio in this article should be interpreted as the ratio of number of orbits completed in the same time interval, rather than as the ratio of orbital periods, which would be the inverse ratio. Thus, the 2:3 ratio above means that Pluto completes two orbits in the time it takes Neptune to complete three. In the case of resonance relationships among three or more bodies, either type of ratio may be used (whereby the smallest whole-integer ratio sequences are not necessarily reversals of each other), and the type of ratio will be specified.

↑ Return to Menu