Cladogenesis in the context of "Stephen Jay Gould"

⭐ In the context of Stephen Jay Gould’s work, cladogenesis is considered a key component of which evolutionary model?

Ad spacer

⭐ Core Definition: Cladogenesis

Cladogenesis is an evolutionary splitting of a parent species into two distinct species, forming a clade.

This event usually occurs when a few organisms end up in new, often distant areas or when environmental changes cause several extinctions, opening up ecological niches for the survivors and causing population bottlenecks and founder effects changing allele frequencies of diverging populations compared to their ancestral population. The events that cause these species to originally separate from each other over distant areas may still allow both of the species to have equal chances of surviving, reproducing, and even evolving to better suit their environments while still being two distinct species due to subsequent natural selection, mutations and genetic drift.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Cladogenesis in the context of Stephen Jay Gould

Stephen Jay Gould (/ɡld/ GOOLD; September 10, 1941 – May 20, 2002) was an American paleontologist, evolutionary biologist, and historian of science. He was one of the most influential and widely read authors of popular science of his generation. Gould spent most of his career teaching at Harvard University and working at the American Museum of Natural History in New York. In 1996, Gould was hired as the Vincent Astor Visiting Research Professor of Biology at New York University, after which he divided his time teaching between there and Harvard.

Gould's most significant contribution to evolutionary biology was the theory of punctuated equilibrium developed with Niles Eldredge in 1972. The theory proposes that most evolution is characterized by long periods of evolutionary stability, infrequently punctuated by swift periods of branching speciation. The theory was contrasted against phyletic gradualism, the popular idea that evolutionary change is marked by a pattern of smooth and continuous change in the fossil record.

↓ Explore More Topics
In this Dossier

Cladogenesis in the context of Sociocultural evolution

Sociocultural evolution, sociocultural evolutionism or social evolution are theories of sociobiology and cultural evolution that describe how societies and culture change over time. Whereas sociocultural development traces processes that tend to increase the complexity of a society or culture, sociocultural evolution also considers process that can lead to decreases in complexity (degeneration) or that can produce variation or proliferation without any seemingly significant changes in complexity (cladogenesis). Sociocultural evolution is "the process by which structural reorganization is affected through time, eventually producing a form or structure that is qualitatively different from the ancestral form".

Most of the 19th-century and some 20th-century approaches to socioculture aimed to provide models for the evolution of humankind as a whole, arguing that different societies have reached different stages of social development. The most comprehensive attempt to develop a general theory of social evolution centering on the development of sociocultural systems, the work of Talcott Parsons (1902–1979), operated on a scale which included a theory of world history. Another attempt, on a less systematic scale, originated from the 1970s with the world-systems approach of Immanuel Wallerstein (1930–2019) and his followers.

↑ Return to Menu

Cladogenesis in the context of Speciation

Speciation is the evolutionary process by which populations evolve to become distinct species. The biologist Orator F. Cook coined the term in 1906 for cladogenesis, the splitting of lineages, as opposed to anagenesis, phyletic evolution within lineages. Charles Darwin was the first to describe the role of natural selection in speciation in his 1859 book On the Origin of Species. He also identified sexual selection as a likely mechanism, but found it problematic.

There are four geographic modes of speciation in nature, based on the extent to which speciating populations are isolated from one another: allopatric, peripatric, parapatric, and sympatric. Whether genetic drift is a minor or major contributor to speciation is the subject of much ongoing discussion.

↑ Return to Menu

Cladogenesis in the context of Basal (phylogenetics)

In phylogenetics, basal is the direction of the base (or root) of a rooted phylogenetic tree or cladogram. The term may be more strictly applied only to nodes adjacent to the root, or more loosely applied to nodes regarded as being close to the root. Note that extant taxa that lie on branches connecting directly to the root are not more closely related to the root than any other extant taxa.

While there must always be two or more equally "basal" clades sprouting from the root of every cladogram, those clades may differ widely in taxonomic rank, species diversity, or both. If C is a basal clade within D that has the lowest rank of all basal clades within D, C may be described as the basal taxon of that rank within D. The concept of a 'key innovation' implies some degree of correlation between evolutionary innovation and diversification. However, such a correlation does not make a given case predicable, so ancestral characters should not be imputed to the members of a less species-rich basal clade without additional evidence.

↑ Return to Menu

Cladogenesis in the context of Punctuated equilibrium

In evolutionary biology, punctuated equilibrium (also called punctuated equilibria) is a theory that proposes that once a species appears in the fossil record, the population will become stable, showing little evolutionary change for most of its geological history. This state of little or no morphological change is called stasis. When significant evolutionary change occurs, the theory proposes that it is generally restricted to rare and geologically rapid events of branching speciation called cladogenesis. Cladogenesis is the process by which a species splits into two distinct species, rather than one species gradually transforming into another.

Punctuated equilibrium is commonly contrasted with phyletic gradualism, the idea that evolution generally occurs uniformly by the steady and gradual transformation of whole lineages (anagenesis).

↑ Return to Menu

Cladogenesis in the context of Anagenesis

Anagenesis is the gradual evolution of a species that continues to exist as an interbreeding population. This contrasts with cladogenesis, which occurs when branching or splitting occurs, leading to two or more lineages and resulting in separate species. Anagenesis does not always lead to the formation of a new species from an ancestral species. When speciation does occur as different lineages branch off and cease to interbreed, a core group may continue to be defined as the original species. The evolution of this group, without extinction or species selection, is anagenesis.

↑ Return to Menu

Cladogenesis in the context of Phyletic gradualism

Phyletic gradualism is a model of evolution which theorizes that most speciation is slow, uniform and gradual. When evolution occurs in this mode, it is usually by the steady transformation of a whole species into a new one (through a process called anagenesis). In this view no clear line of demarcation exists between an ancestral species and a descendant species, unless splitting occurs. The theory is contrasted with punctuated equilibrium.

↑ Return to Menu