Circumstellar envelope in the context of "Circumstellar dust"

Play Trivia Questions online!

or

Skip to study material about Circumstellar envelope in the context of "Circumstellar dust"

Ad spacer

⭐ Core Definition: Circumstellar envelope

A circumstellar envelope (CSE) is a part of a star that has a roughly spherical shape and is not gravitationally bound to the star core. Usually circumstellar envelopes are formed from the dense stellar wind, or they are present before the formation of the star. Circumstellar envelopes of old stars (Mira variables and OH/IR stars) eventually evolve into protoplanetary nebulae, and circumstellar envelopes of young stellar objects evolve into circumstellar discs.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Circumstellar envelope in the context of Circumstellar dust

Circumstellar dust is cosmic dust around a star. It can be in the form of a spherical shell or a disc, e.g. an accretion disk. Circumstellar dust can be responsible for significant extinction and is usually the source of an infrared excess for stars that have it. For some evolved stars on the asymptotic giant branch, the dust can be composed of silicate emissions. According to a study, it is still uncertain whether the dust is a result of crystalline silicate or polycyclic aromatic hydrocarbon. However, recent observations revealed that Vega-type stars display broad silicate emission. It is suggested that the circumstellar dust components can depend on the evolutionary stage of a star and is related to the changes in its physical conditions.

The study of the composition of this dust is dubbed astrominerology. The circumstellar dust around aging stars has been observed to include, "almost pure crystalline Mg-rich silicates (forsterite and clinoenstatite), amorphous silicates, diopside, spinel, oxides (corundum and Fe0.9Mg0.1O), and also carbon-rich solids such as: (hydrogenated) amorphous carbons, aromatic hydrocarbons and silicon carbide."

↓ Explore More Topics
In this Dossier

Circumstellar envelope in the context of Oort cloud

The Oort cloud (pronounced /ɔːrt/ ORT or /ʊərt/ OORT), sometimes called the Öpik–Oort cloud, is theorized to be a cloud of billions of icy planetesimals surrounding the Sun at distances ranging from 2,000 to 200,000 AU (0.03 to 3.2 light-years). The cloud was proposed in 1950 by the Dutch astronomer Jan Oort, in whose honor the idea was named. Oort proposed that the bodies in this cloud replenish and keep constant the number of long-period comets entering the inner Solar System—where they are eventually consumed and destroyed during close approaches to the Sun.

The cloud is thought to encompass two regions: a disc-shaped inner Oort cloud aligned with the solar ecliptic (also called its Hills cloud) and a spherical outer Oort cloud enclosing the entire Solar System. Both regions lie well beyond the heliosphere and are in interstellar space. The innermost portion of the Oort cloud is more than a thousand times as far from the Sun as the Kuiper belt, the scattered disc and the detached objects—three nearer reservoirs of trans-Neptunian objects.

↑ Return to Menu