Chloroplasts in the context of "Kelp"

Play Trivia Questions online!

or

Skip to study material about Chloroplasts in the context of "Kelp"

Ad spacer

⭐ Core Definition: Chloroplasts

A chloroplast (/ˈklɔːrəˌplæst, -plɑːst/) is a type of organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. Chloroplasts have a high concentration of chlorophyll pigments which capture the energy from sunlight and convert it to chemical energy and release oxygen. The chemical energy created is then used to make sugar and other organic molecules from carbon dioxide in a process called the Calvin cycle. Chloroplasts carry out a number of other functions, including fatty acid synthesis, amino acid synthesis, and the immune response in plants. The number of chloroplasts per cell varies from one, in some unicellular algae, up to 100 in plants like Arabidopsis and wheat.

Chloroplasts are highly dynamic—they circulate and are moved around within cells. Their behavior is strongly influenced by environmental factors like light color and intensity. Chloroplasts cannot be made anew by the plant cell and must be inherited by each daughter cell during cell division, which is thought to be inherited from their ancestor—a photosynthetic cyanobacterium that was engulfed by an early eukaryotic cell.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Chloroplasts in the context of Kelp

Kelps are large brown algae or seaweeds that make up the order Laminariales. There are about 30 genera. Despite its appearance and use of photosynthesis in chloroplasts, kelp is not a plant but a stramenopile (a group containing many protists).

Kelp grows from stalks close together in very dense areas like forests under shallow temperate and Arctic oceans. They were previously thought to have appeared in the Miocene, 5 to 23 million years ago based on fossils from California. Kelps were present in the northeastern Pacific Ocean by at least 32 million years ago. These organisms require nutrient-rich water with temperatures between 6 and 14 °C (43 and 57 °F). They are known for their fast growth —the genera Macrocystis and Nereocystis can grow as fast as half a metre a day (that is, about 20 inches a day), ultimately reaching 30 to 80 metres (100 to 260 ft).

↓ Explore More Topics
In this Dossier

Chloroplasts in the context of Endosymbiosis

An endosymbiont or endobiont is an organism that lives within the body or cells of another organism. Typically, the two organisms are in a mutualistic relationship. Examples are nitrogen-fixing bacteria (called rhizobia), which live in the root nodules of legumes, single-cell algae inside reef-building corals, and bacterial endosymbionts that provide essential nutrients to insects.

Endosymbiosis played key roles in the development of eukaryotes and plants. Roughly 2.3 billion years ago an archaeon (likely within the Asgard superphylum) absorbed an alphaproteobacterium through phagocytosis, that eventually became the mitochondria that provide energy to almost all living eukaryotic cells. Approximately 1 billion years ago, some of those cells absorbed cyanobacteria that eventually became chloroplasts, organelles that produce energy from sunlight. Approximately 100 million years ago, a lineage of amoeba in the genus Paulinella independently engulfed a cyanobacterium that evolved to be functionally synonymous with traditional chloroplasts, called chromatophores.

↑ Return to Menu

Chloroplasts in the context of Chlorella

Chlorella is a genus of about thirteen species of single-celled or colonial green algae of the division Chlorophyta. The cells are spherical in shape, about 2 to 10 μm in diameter, and are without flagella. Their chloroplasts contain the green photosynthetic pigments chlorophyll-a and -b. In ideal conditions cells of Chlorella multiply rapidly, requiring only carbon dioxide, water, sunlight, and a small amount of minerals to reproduce.

The name Chlorella is taken from the Greek χλώρος, chlōros/ khlōros, meaning green, and the Latin diminutive suffix -ella, meaning small. German biochemist and cell physiologist Otto Heinrich Warburg, awarded with the Nobel Prize in Physiology or Medicine in 1931 for his research on cell respiration, also studied photosynthesis in Chlorella. In 1961, Melvin Calvin of the University of California received the Nobel Prize in Chemistry for his research on the pathways of carbon dioxide assimilation in plants using Chlorella.

↑ Return to Menu

Chloroplasts in the context of Plastid

A plastid is a membrane-bound organelle found in the cells of plants, algae, and some other eukaryotic organisms. Plastids are considered to be intracellular endosymbiotic cyanobacteria.

Examples of plastids include chloroplasts (used for photosynthesis); chromoplasts (used for synthesis and storage of pigments); leucoplasts (non-pigmented plastids, some of which can differentiate); and apicoplasts (non-photosynthetic plastids of apicomplexa derived from secondary endosymbiosis).

↑ Return to Menu

Chloroplasts in the context of Prototheca

Prototheca is a genus of algae in the family Chlorellaceae. While this genus is a member of the green algae, all Prototheca no longer have chloroplasts and therefore their photosynthetic ability. Some species can cause protothecosis in humans and various vertebrates.

↑ Return to Menu