Chirality (chemistry) in the context of "Tetrahedral molecular geometry"

Play Trivia Questions online!

or

Skip to study material about Chirality (chemistry) in the context of "Tetrahedral molecular geometry"

Ad spacer

⭐ Core Definition: Chirality (chemistry)

In chemistry, a molecule or ion is called chiral (/ˈkrəl/) if it cannot be superposed on its mirror image by any combination of rotations, translations, and some conformational changes. This geometric property is called chirality (/kˈrælɪti/). The terms are derived from Ancient Greek χείρ (cheir) 'hand'; which is the canonical example of an object with this property.

A chiral molecule or ion exists in two stereoisomers that are mirror images of each other, called enantiomers; they are often distinguished as either "right-handed" or "left-handed" by their absolute configuration or some other criterion. The two enantiomers have the same chemical properties, except when reacting with other chiral compounds. They also have the same physical properties, except that they often have opposite optical activities. A homogeneous mixture of the two enantiomers in equal parts, a racemic mixture, differs chemically and physically from the pure enantiomers.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Chirality (chemistry) in the context of Tetrahedral molecular geometry

In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron. The bond angles are arccos(−1/3) = 109.4712206...° ≈ 109.5° when all four substituents are the same, as in methane (CH4) as well as its heavier analogues. Methane and other perfectly symmetrical tetrahedral molecules belong to point group Td, but most tetrahedral molecules have lower symmetry. Tetrahedral molecules can be chiral.

↓ Explore More Topics
In this Dossier

Chirality (chemistry) in the context of Optical isomerism

In chemistry, an enantiomer (/ɪˈnænti.əmər, ɛ-, -oʊ-/ ih-NAN-tee-ə-mər), also known as an optical isomer, antipode, or optical antipode, is one of a pair of molecular entities which are mirror images of each other and non-superposable.

Enantiomer molecules are like right and left hands: one cannot be superposed onto the other without first being converted to its mirror image. It is solely a relationship of chirality and the permanent three-dimensional relationships among molecules or other chemical structures: no amount of re-orientation of a molecule as a whole or conformational change converts one chemical into its enantiomer. Chemical structures with chirality rotate plane-polarized light. A mixture of equal amounts of each enantiomer, a racemic mixture or a racemate, does not rotate light.

↑ Return to Menu

Chirality (chemistry) in the context of Lysine

Lysine (symbol Lys or K) is an α-amino acid that is a precursor to many proteins. Lysine contains an α-amino group (which is in the protonated −NH+3 form when the lysine is dissolved in water at physiological pH), an α-carboxylic acid group (which is in the deprotonated −COO form when the lysine is dissolved in water at physiological pH), and a side chain (CH2)4NH2 (which is partially protonated when the lysine is dissolved in water at physiological pH), and so it is classified as a basic, charged (in water at physiological pH), aliphatic amino acid. It is encoded by the codons AAA and AAG. Like almost all other amino acids, the α-carbon is chiral and lysine may refer to either enantiomer or a racemic mixture of both. For the purpose of this article, lysine will refer to the biologically active enantiomer L-lysine, where the α-carbon is in the S configuration.

↑ Return to Menu

Chirality (chemistry) in the context of Halothane

Halothane (Bromochlorotrifluoroethane), sold under the brand name Fluothane among others, is a halocarbon with the chemical formula CF3CHBrCl. It is used as a general anaesthetic given by inhalation. It can be used to induce or maintain anaesthesia. Its use in developed countries has been mostly replaced by newer anesthetic agents such as sevoflurane. One of its benefits is that it does not increase the production of saliva, which can be particularly useful in those who are difficult to intubate.

Side effects include an irregular heartbeat, respiratory depression, and hepatotoxicity. Like all volatile anesthetics, it should not be used in people with a personal or family history of malignant hyperthermia. It appears to be safe in porphyria. It is unclear whether its usage during pregnancy is harmful to the fetus, and its use during a C-section is generally discouraged. Halothane is a chiral molecule that is used as a racemic mixture.

↑ Return to Menu

Chirality (chemistry) in the context of Glycine

Glycine (symbol Gly or G; /ˈɡlsn/ ) is an organic compound with the formula C2H5NO2, and is the simplest stable amino acid, distinguished by having a single hydrogen atom as its side chain. As one of the 20 proteinogenic amino acids, glycine is a fundamental building block of proteins in all life and is encoded by all codons starting with GG (GGU, GGC, GGA, and GGG). Because of its minimal side chain, it is the only common amino acid that is not chiral, meaning it is superimposable on its mirror image.

↑ Return to Menu

Chirality (chemistry) in the context of 2-Butanol

Butan-2-ol, or sec-butanol, is an organic compound with formula CH3CH(OH)CH2CH3. Its structural isomers are 1-butanol, isobutanol, and tert-butanol. 2-Butanol is chiral and thus can be obtained as either of two stereoisomers designated as (R)-(−)-butan-2-ol and (S)-(+)-butan-2-ol. It is normally encountered as a 1:1 mixture of the two stereoisomers — a racemic mixture.

This secondary alcohol is a flammable, colorless liquid that is soluble in three parts water and completely miscible with organic solvents. It is produced on a large scale, primarily as a precursor to the industrial solvent methyl ethyl ketone.

↑ Return to Menu

Chirality (chemistry) in the context of Phenylalanine

Phenylalanine (symbol Phe or F) is an essential α-amino acid with the formula C
9
H
11
NO
2
. It can be viewed as a benzyl group substituted for the methyl group of alanine, or a phenyl group in place of a terminal hydrogen of alanine. This essential amino acid is classified as neutral, and nonpolar because of the inert and hydrophobic nature of the benzyl side chain. The L-isomer is used to biochemically form proteins coded for by DNA. Phenylalanine is a precursor for tyrosine, the monoamine neurotransmitters dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline), and the biological pigment melanin. It is encoded by the messenger RNA codons UUU and UUC.

Phenylalanine is found naturally in the milk of mammals. It is used in the manufacture of food and drink products and sold as a nutritional supplement as it is a direct precursor to the neuromodulator phenethylamine. As an essential amino acid, phenylalanine is not synthesized de novo in humans and other animals, who must ingest phenylalanine or phenylalanine-containing proteins.

↑ Return to Menu

Chirality (chemistry) in the context of Jacobus Henricus van 't Hoff

Jacobus Henricus van 't Hoff Jr. (Dutch: [vɑn (ə)t ˈɦɔf]; 30 August 1852 – 1 March 1911) was a Dutch physical chemist. A highly influential theoretical chemist of his time, Van 't Hoff was the first winner of the Nobel Prize in Chemistry. His pioneering work helped found the modern theory of chemical affinity, chemical equilibrium, chemical kinetics, and chemical thermodynamics. In his 1874 pamphlet, Van 't Hoff formulated the theory of the tetrahedral carbon atom and laid the foundations of stereochemistry. In 1875, he predicted the correct structures of allenes and cumulenes as well as their axial chirality. He is also widely considered one of the founders of physical chemistry as the discipline is known today.

↑ Return to Menu

Chirality (chemistry) in the context of Sinistral and dextral

Sinistral and dextral, in some scientific fields, are the two types of chirality ("handedness") or relative direction. The terms are derived from the Latin words for "left" (sinister) and "right" (dexter). Other disciplines use different terms (such as dextro- and laevo-rotary in chemistry, or clockwise and anticlockwise in physics) or simply use left and right (as in anatomy).

Relative direction and chirality are distinct concepts. Relative direction is from the point of view of the observer; a completely symmetric object has a left side and a right side, from the observer's point of view, if the top and bottom and direction of observation are defined. Chirality, however, is observer-independent: no matter how one looks at a right-hand screw thread, it remains different from a left-hand screw thread. Therefore, a symmetric object has sinistral and dextral directions arbitrarily defined by the position of the observer, while an asymmetric object that shows chirality may have sinistral and dextral directions defined by characteristics of the object, regardless of the position of the observer.

↑ Return to Menu