Chip carrier in the context of Hardware design


Chip carrier in the context of Hardware design

Chip carrier Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Chip carrier in the context of "Hardware design"


⭐ Core Definition: Chip carrier

In electronics, a chip carrier is one of several kinds of surface-mount technology packages for integrated circuits (commonly called "chips"). Connections are made on all four edges of a square package, the outer edges of which contain metal pins that carry power and signals to and from the rest of the system. Compared to the internal cavity that holds the integrated circuit, the overall size of the package is large to provide room for robust pins.

↓ Menu
HINT:

In this Dossier

Chip carrier in the context of Wafer dicing

Die singulation, also called wafer dicing, is the process in semiconductor device fabrication by which dies are separated from a finished wafer of semiconductor. It can involve scribing and breaking, mechanical sawing (normally with a machine called a dicing saw) or laser cutting. All methods are typically automated to ensure precision and accuracy.Following the dicing process the individual silicon chips may be encapsulated into chip carriers which are then suitable for use in building electronic devices such as computers, etc.

During dicing, wafers are typically mounted on dicing tape which has a sticky backing that holds the wafer on a thin sheet metal frame. Dicing tape has different properties depending on the dicing application. UV curable tapes are used for smaller sizes and non-UV dicing tape for larger die sizes. Dicing saws may use a dicing blade with diamond particles, rotating at 30,000 RPM and cooled with deionized water. Once a wafer has been diced, the pieces left on the dicing tape are referred to as die, dice or dies. Each will be packaged in a suitable package or placed directly on a printed circuit board substrate as a "bare die". The areas that have been cut or sawn away, called die streets, are typically about 75 micrometres (0.003 inch) wide. Once a wafer has been diced, the die will stay on the dicing tape until they are extracted by die-handling equipment, such as a die bonder or die sorter, further in the electronics assembly process.

View the full Wikipedia page for Wafer dicing
↑ Return to Menu

Chip carrier in the context of CPU design

Processor design is a subfield of computer science and computer engineering (fabrication) that deals with creating a processor, a key component of computer hardware.

The design process involves choosing an instruction set and a certain execution paradigm (e.g. VLIW or RISC) and results in a microarchitecture, which might be described in e.g. VHDL or Verilog. For microprocessor design, this description is then manufactured employing some of the various semiconductor device fabrication processes, resulting in a die which is bonded onto a chip carrier. This chip carrier is then soldered onto, or inserted into a socket on, a printed circuit board (PCB).

View the full Wikipedia page for CPU design
↑ Return to Menu

Chip carrier in the context of Ball grid array

A ball grid array (BGA) is a type of surface-mount packaging (a chip carrier) used for integrated circuits. BGA packages are used to permanently mount devices such as microprocessors. A BGA can provide more interconnection pins than can be put on a dual in-line or flat package. The whole bottom surface of the device can be used, instead of just the perimeter. The traces connecting the package's leads to the wires or balls which connect the die to package are also on average shorter than with a perimeter-only type, leading to better performance at high speeds.

Soldering of BGA devices requires precise control and is usually done by automated processes such as in computer-controlled automatic reflow ovens.

View the full Wikipedia page for Ball grid array
↑ Return to Menu

Chip carrier in the context of Processor design

Processor design is a subfield of computer engineering and electronics that deals with creating a processor, a key component of computer hardware. While historically focused on the central processing unit (CPU), modern design often involves system-on-chip (SoC) architectures, which integrate multiple processing units such as CPUs, graphics processing units (GPUs), and neural processing units (NPUs) onto a single die or set of chiplets.

The design process involves choosing an instruction set and a certain execution paradigm (e.g. VLIW or RISC) and results in a microarchitecture, which might be described in e.g. VHDL or Verilog. For microprocessor design, this description is then manufactured employing some of the various semiconductor device fabrication processes, resulting in a die which is bonded onto a chip carrier. This chip carrier is then soldered onto, or inserted into a socket on, a printed circuit board (PCB).

View the full Wikipedia page for Processor design
↑ Return to Menu

Chip carrier in the context of Dual in-line package

In microelectronics, a dual in-line package (DIP or DIL) is an electronic component package with a rectangular housing and two parallel rows of electrical connecting pins. The package may be through-hole mounted to a printed circuit board (PCB) or inserted in a socket. The dual-inline format was invented by Don Forbes, Rex Rice and Bryant Rogers at Fairchild R&D in 1964, when the restricted number of leads available on circular transistor-style packages became a limitation in the use of integrated circuits. Increasingly complex circuits required more signal and power supply leads (as observed in Rent's rule); eventually microprocessors and similar complex devices required more leads than could be put on a DIP package, leading to development of higher-density chip carriers. Furthermore, square and rectangular packages made it easier to route printed-circuit traces beneath the packages.

A DIP is usually referred to as a DIPn, where n is the total number of pins, and sometimes appended with the row-to-row package width "N" for narrow (0.3") or "W" for wide (0.6"). For example, a microcircuit package with two rows of seven vertical leads would be a DIP14 or DIP14N. The photograph at the upper right shows three DIP14 ICs. Common packages have as few as four and as many as 64 leads. Many analog and digital integrated circuit types are available in DIP packages, as are arrays of transistors, switches, light emitting diodes, and resistors. DIP plugs for ribbon cables can be used with standard IC sockets.

View the full Wikipedia page for Dual in-line package
↑ Return to Menu