Cherenkov radiation in the context of "Pavel Cherenkov"

Play Trivia Questions online!

or

Skip to study material about Cherenkov radiation in the context of "Pavel Cherenkov"

Ad spacer

⭐ Core Definition: Cherenkov radiation

Cherenkov radiation (/əˈrɛŋkɒf/) is an electromagnetic radiation emitted when a charged particle (such as an electron) passes through a dielectric medium (such as distilled water) at a speed greater than the phase velocity (speed of propagation of a wavefront in a medium) of light in that medium. A classic example of Cherenkov radiation is the characteristic blue glow of an underwater nuclear reactor. Its cause is similar to the cause of a sonic boom, the sharp sound heard when faster-than-sound movement occurs. The phenomenon is named after Soviet physicist Pavel Cherenkov.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Cherenkov radiation in the context of Ultraviolet

Ultraviolet radiation or UV is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of the total electromagnetic radiation output from the Sun. It is also produced by electric arcs, Cherenkov radiation, and specialized lights, such as mercury-vapor lamps, tanning lamps, and black lights.

The photons of ultraviolet have greater energy than those of visible light, from about 3.1 to 12 electron volts, around the minimum energy required to ionize atoms. Although long-wavelength ultraviolet is not considered an ionizing radiation because its photons lack sufficient energy, it can induce chemical reactions and cause many substances to glow or fluoresce. Many practical applications, including chemical and biological effects, are derived from the way that UV radiation can interact with organic molecules. These interactions can involve exciting orbital electrons to higher energy states in molecules potentially breaking chemical bonds. In contrast, the main effect of longer wavelength radiation is to excite vibrational or rotational states of these molecules, increasing their temperature. Short-wave ultraviolet light is ionizing radiation. Consequently, short-wave UV damages DNA and sterilizes surfaces with which it comes into contact.

↑ Return to Menu