Chemical structure in the context of "Ozonation"

Play Trivia Questions online!

or

Skip to study material about Chemical structure in the context of "Ozonation"

Ad spacer

⭐ Core Definition: Chemical structure

A chemical structure of a molecule is a spatial arrangement of its atoms and their chemical bonds. Its determination includes a chemist's specifying the molecular geometry and, when feasible and necessary, the electronic structure of the target molecule or other solid. Molecular geometry refers to the spatial arrangement of atoms in a molecule and the chemical bonds that hold the atoms together and can be represented using structural formulae and by molecular models; complete electronic structure descriptions include specifying the occupation of a molecule's molecular orbitals. Structure determination can be applied to a range of targets from very simple molecules (e.g., diatomic oxygen or nitrogen) to very complex ones (e.g., such as protein or DNA).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Chemical structure in the context of Ozone

Ozone (/ˈzn/ ), also called trioxygen, is an inorganic molecule with the chemical formula O
3
. It is a pale-blue gas with a distinctively pungent odour. It is an allotrope of oxygen that is much less stable than the diatomic allotrope O
2
, breaking down in the lower atmosphere to O
2
(dioxygen). Ozone is formed from dioxygen by the action of ultraviolet (UV) light and electrical discharges within the Earth's atmosphere. It is present in very low concentrations throughout the atmosphere, with its highest concentration high in the ozone layer of the stratosphere, which absorbs most of the Sun's ultraviolet (UV) radiation.

Ozone's odour is reminiscent of chlorine, and detectable by many people at concentrations of as little as 0.1 ppm in air. Ozone's O3 structure was determined in 1865. The molecule was later proven to have a bent structure and to be weakly diamagnetic. At standard temperature and pressure, ozone is a pale blue gas that condenses at cryogenic temperatures to a dark blue liquid and finally a violet-black solid. Ozone's instability with regard to more common dioxygen is such that both concentrated gas and liquid ozone may decompose explosively at elevated temperatures, physical shock, or fast warming to the boiling point. It is therefore used commercially only in low concentrations.

↑ Return to Menu

Chemical structure in the context of Chemical property

A chemical property is any of a material's properties that becomes evident during, or after, a chemical reaction; that is, any attribute that can be established only by changing a substance's chemical identity. Simply speaking, chemical properties cannot be determined just by viewing or touching the substance; the substance's internal structure must be affected greatly for its chemical properties to be investigated. When a substance goes under a chemical reaction, the properties will change drastically, resulting in chemical change. However, a catalytic property would also be a chemical property.

Chemical properties can be contrasted with physical properties, which can be discerned without changing the substance's structure. However, for many properties within the scope of physical chemistry, and other disciplines at the boundary between chemistry and physics, the distinction may be a matter of researcher's perspective. Material properties, both physical and chemical, can be viewed as supervenient; i.e., secondary to the underlying reality. Several layers of superveniency are possible.

↑ Return to Menu

Chemical structure in the context of Chemical formula

A chemical formula is a way of presenting information about the chemical proportions of atoms that constitute a particular chemical compound or molecule, using chemical element symbols, numbers, and sometimes also other symbols, such as parentheses, dashes, brackets, commas and plus (+) and minus (−) signs. These are limited to a single typographic line of symbols, which may include subscripts and superscripts. A chemical formula is not a chemical name since it does not contain any words. Although a chemical formula may imply certain simple chemical structures, it is not the same as a full chemical structural formula. Chemical formulae can fully specify the structure of only the simplest of molecules and chemical substances, and are generally more limited in power than chemical names and structural formulae.

The simplest types of chemical formulae are called empirical formulae, which use letters and numbers indicating the numerical proportions of atoms of each type. Molecular formulae indicate the simple numbers of each type of atom in a molecule, with no information on structure. For example, the empirical formula for glucose is CH2O (twice as many hydrogen atoms as carbon and oxygen), while its molecular formula is C6H12O6 (12 hydrogen atoms, six carbon and oxygen atoms).

↑ Return to Menu

Chemical structure in the context of Drug class

A drug class is a group of medications and other compounds that share similar chemical structures, act through the same mechanism of action (i.e., binding to the same biological target), have similar modes of action, and/or are used to treat similar diseases. The FDA has long worked to classify and license new medications. Its Drug Evaluation and Research Center categorizes these medications based on both their chemical and therapeutic classes.

In several major drug classification systems, these four types of classifications are organized into a hierarchy. For example, fibrates are a chemical class of drugs (amphipathic carboxylic acids) that share the same mechanism of action (PPAR agonist), the same mode of action (reducing blood triglyceride levels), and are used to prevent and treat the same disease (atherosclerosis). However, not all PPAR agonists are fibrates, not all triglyceride-lowering agents are PPAR agonists, and not all drugs used to treat atherosclerosis lower triglycerides.A drug class is typically defined by a prototype drug, the most important, and typically the first developed drug within the class, used as a reference for comparison.

↑ Return to Menu

Chemical structure in the context of Azide

In chemistry, azide (/ˈzd/, AY-zyd) is a linear, polyatomic anion with the formula N3 and structure N=N=N. It is the conjugate base of hydrazoic acid HN3. Organic azides are organic compounds with the formula RN3, containing the azide functional group. The dominant application of azides is as a propellant in air bags.

↑ Return to Menu

Chemical structure in the context of Acetyl group

In organic chemistry, an acetyl group is a functional group denoted by the chemical formula −COCH3 and the structure −C(=O)−CH3. It is sometimes represented by the symbol Ac (not to be confused with the element actinium). In IUPAC nomenclature, an acetyl group is called an ethanoyl group.

An acetyl group contains a methyl group (−CH3) that is single-bonded to a carbonyl (C=O), making it an acyl group. The carbonyl center of an acyl radical has one non-bonded electron with which it forms a chemical bond to the remainder (denoted with the letter R) of the molecule.

↑ Return to Menu

Chemical structure in the context of Chalcedony

Chalcedony (/kælˈsɛdəni/ kal-SED-ə-nee or /ˈkælsəˌdni/ KAL-sə-doh-nee) is a cryptocrystalline form of silica, composed of very fine intergrowths of quartz and moganite. These are both silica minerals, but they differ in that quartz has a trigonal crystal structure, while moganite is monoclinic. Chalcedony's standard chemical structure (based on the chemical composition of quartz) is SiO2 (silicon dioxide).

Chalcedony has a waxy luster, and may be semitransparent or translucent. It can assume a wide range of colors, but those most commonly seen are white to gray, grayish-blue or a shade of brown ranging from pale to nearly black. The color of chalcedony sold commercially is often enhanced by dyeing or heating.

↑ Return to Menu

Chemical structure in the context of Acaricide

Acaricides are pesticides that kill members of the arachnid subclass Acari, which includes ticks and mites.Acaricides are used both in medicine and agriculture, although the desired selective toxicity differs between the two fields.

↑ Return to Menu