Charge density in the context of P orbital


Charge density in the context of P orbital

Charge density Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Charge density in the context of "P orbital"


⭐ Core Definition: Charge density

In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density (symbolized by the Greek letter ρ) is the quantity of charge per unit volume, measured in the SI system in coulombs per cubic meter (C⋅m), at any point in a volume. Surface charge density (σ) is the quantity of charge per unit area, measured in coulombs per square meter (C⋅m), at any point on a surface charge distribution on a two dimensional surface. Linear charge density (λ) is the quantity of charge per unit length, measured in coulombs per meter (C⋅m), at any point on a line charge distribution. Charge density can be either positive or negative, since electric charge can be either positive or negative.

Like mass density, charge density can vary with position. In classical electromagnetic theory charge density is idealized as a continuous scalar function of position , like a fluid, and , , and are usually regarded as continuous charge distributions, even though all real charge distributions are made up of discrete charged particles. Due to the conservation of electric charge, the charge density in any volume can only change if an electric current of charge flows into or out of the volume. This is expressed by a continuity equation which links the rate of change of charge density and the current density .

↓ Menu
HINT:

In this Dossier

Charge density in the context of Hydrogen ion

A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×10 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions (hydrons) and negatively charged (hydride) ions.

View the full Wikipedia page for Hydrogen ion
↑ Return to Menu

Charge density in the context of Atomic orbital

In quantum mechanics, an atomic orbital (/ˈɔːrbɪtəl/ ) is a function describing the location and wave-like behavior of an electron in an atom. This function describes an electron's charge distribution around the atom's nucleus, and can be used to calculate the probability of finding an electron in a specific region around the nucleus.

Each orbital in an atom is characterized by a set of values of three quantum numbers n, , and m, which respectively correspond to an electron's energy, its orbital angular momentum, and its orbital angular momentum projected along a chosen axis (magnetic quantum number). The orbitals with a well-defined magnetic quantum number are generally complex-valued. Real-valued orbitals can be formed as linear combinations of m and −m orbitals, and are often labeled using associated harmonic polynomials (e.g., xy, xy) which describe their angular structure.

View the full Wikipedia page for Atomic orbital
↑ Return to Menu

Charge density in the context of Conservation of electric charge

In physics, charge conservation is the principle, of experimental nature, that the total electric charge in an isolated system never changes. The net quantity of electric charge, the amount of positive charge minus the amount of negative charge in the universe, is always conserved. Charge conservation, considered as a physical conservation law, implies that the change in the amount of electric charge in any volume of space is exactly equal to the amount of charge flowing into the volume minus the amount of charge flowing out of the volume. In essence, charge conservation is an accounting relationship between the amount of charge in a region and the flow of charge into and out of that region, given by a continuity equation between charge density and current density .

This does not mean that individual positive and negative charges cannot be created or destroyed. Electric charge is carried by subatomic particles such as electrons and protons. Charged particles can be created and destroyed in elementary particle reactions. In particle physics, charge conservation means that in reactions that create charged particles, equal numbers of positive and negative particles are always created, keeping the net amount of charge unchanged. Similarly, when particles are destroyed, equal numbers of positive and negative charges are destroyed. This property is supported without exception by all empirical observations so far.

View the full Wikipedia page for Conservation of electric charge
↑ Return to Menu

Charge density in the context of Perfect conductor

In electrostatics, a perfect conductor is an idealized model for real conducting materials. The defining property of a perfect conductor is that static electric field and the charge density both vanish in its interior. If the conductor has excess charge, it accumulates as an infinitesimally thin layer of surface charge. An external electric field is screened from the interior of the material by rearrangement of the surface charge.

Alternatively, a perfect conductor is an idealized material exhibiting infinite electrical conductivity or, equivalently, zero resistivity (cf. perfect dielectric). While perfect electrical conductors do not exist in nature, the concept is a useful model when electrical resistance is negligible compared to other effects. One example is ideal magnetohydrodynamics, the study of perfectly conductive fluids. Another example is electrical circuit diagrams, which carry the implicit assumption that the wires connecting the components have no resistance. Yet another example is in computational electromagnetics, where perfect conductors can be simulated faster, since the parts of equations that take finite conductivity into account can be neglected.

View the full Wikipedia page for Perfect conductor
↑ Return to Menu

Charge density in the context of Power, root-power, and field quantities

A power quantity is a power or a quantity directly proportional to power, e.g., energy density, acoustic intensity, and luminous intensity. Energy quantities may also be labelled as power quantities in this context.

A root-power quantity is a quantity such as voltage, current, sound pressure, electric field strength, speed, or charge density, the square of which, in linear systems, is proportional to power. The term root-power quantity refers to the square root that relates these quantities to power. The term was introduced in ISO 80000-1 § Annex C; it replaces and deprecates the term field quantity.

View the full Wikipedia page for Power, root-power, and field quantities
↑ Return to Menu

Charge density in the context of Jellium

Jellium, also known as the uniform electron gas (UEG) or homogeneous electron gas (HEG), is a quantum mechanical model of interacting free electrons in a solid where the complementary positive charges are not atomic nuclei but instead an idealized background of uniform positive charge density. This model allows one to focus on the effects in solids that occur due to the quantum nature of electrons and their mutual repulsive interactions (due to like charge) without explicit introduction of the atomic lattice and structure making up a real material. Jellium is often used in solid-state physics as a simple model of delocalized electrons in a metal, where it can qualitatively reproduce features of real metals such as screening, plasmons, Wigner crystallization and Friedel oscillations.

At zero temperature, the properties of jellium depend solely upon the constant electronic density. This property lends it to a treatment within density functional theory; the formalism itself provides the basis for the local-density approximation to the exchange-correlation energy density functional.

View the full Wikipedia page for Jellium
↑ Return to Menu