Ceramide in the context of "Glycosphingolipid"

Play Trivia Questions online!

or

Skip to study material about Ceramide in the context of "Glycosphingolipid"

Ad spacer

⭐ Core Definition: Ceramide

Ceramides are a family of waxy lipid molecules. A ceramide is composed of sphingosine and a fatty acid joined by an amide bond. Ceramides are found in high concentrations within the cell membrane of eukaryotic cells, since they are component lipids that make up sphingomyelin, one of the major lipids in the lipid bilayer. Contrary to previous assumptions that ceramides and other sphingolipids found in cell membrane were purely supporting structural elements, ceramide can participate in a variety of cellular signaling: examples include regulating differentiation, proliferation, and programmed cell death (PCD) of cells.

The word ceramide comes from the Latin cera (wax) and amide. Ceramide is a component of vernix caseosa, the waxy or cheese-like white substance found coating the skin of newborn human infants.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Ceramide in the context of Glycosphingolipid

Glycosphingolipids are a subtype of glycolipids containing the amino alcohol sphingosine. They may be considered as sphingolipids with an attached carbohydrate. Glycosphingolipids are a group of lipids (more specifically, sphingolipids) and are a part of the cell membrane. They consist of a hydrophobic ceramide part and a glycosidically bound carbohydrate part. This oligosaccharide content remains on the outside of the cell membrane where it is important for biological processes such as cell adhesion or cell–cell interactions. Glycosphingolipids also play an important role in oncogenesis and ontogenesis.

↓ Explore More Topics
In this Dossier

Ceramide in the context of Sphingolipid

Sphingolipids are a class of lipids containing a backbone of sphingoid bases, which are a set of aliphatic amino alcohols that includes sphingosine. They were discovered in brain extracts in the 1870s and were named after the mythological sphinx because of their enigmatic nature. These compounds play important roles in signal transduction and cell recognition. Sphingolipidoses, or disorders of sphingolipid metabolism, have particular impact on neural tissue. A sphingolipid with a terminal hydroxyl group is a ceramide. Other common groups bonded to the terminal oxygen atom include phosphocholine, yielding a sphingomyelin, and various sugar monomers or dimers, yielding cerebrosides and globosides, respectively. Cerebrosides and globosides are collectively known as glycosphingolipids.

↑ Return to Menu

Ceramide in the context of Extracellular vesicle

Extracellular vesicles (EVs) are lipid bilayer-delimited particles that are naturally released from almost all types of cells. EVs range in diameter from near the size of the smallest physically possible unilamellar liposome (around 20–30 nanometers) to as large as 10 microns or more, although the vast majority of EVs are smaller than 200 nm. EVs can be divided according to size and synthesis route into exosomes, microvesicles and apoptotic bodies. The composition of EVs varies depending on their parent cells, encompassing proteins (e.g., adhesion molecules, cytoskeletons, cytokines, ribosomal proteins, growth factors, and metabolic enzymes), lipids (including cholesterol, lipid rafts, and ceramides), nucleic acids (such as DNA, mRNA, and miRNA), metabolites, and even organelles. Most cells that have been studied to date are thought to release EVs, including some archaeal, bacterial, fungal, and plant cells that are surrounded by cell walls. A wide variety of EV subtypes have been proposed, defined variously by size, biogenesis pathway, cargo, cellular source, and function, leading to a historically heterogenous nomenclature including terms like exosomes and ectosomes.

Numerous functions of EVs have been established or postulated. The first evidence for the existence of EVs was enabled by the ultracentrifuge, the electron microscope, and functional studies of coagulation in the mid-20th century. A sharp increase in interest in EVs occurred in the first decade of the 21st century following the discovery that EVs could transfer nucleic acids such as RNA from cell to cell. Associated with EVs from certain cells or tissues, nucleic acids could be easily amplified as markers of disease and also potentially traced back to a cell of origin, such as a tumor cell. When EVs are taken up by other cells, they may alter the behaviour of the recipient cell, for instance EVs released by colorectal cancer cells increase migration of fibroblasts and thus EVs are of importance in forming tumour landscapes. This discovery also implied that EVs could be used for therapeutic purposes, such as delivering nucleic acids or other cargo to diseased tissue. Conversely, pharmacological inhibition of EV release, through Calix[6]arene, can slow down progression of experimental pancreatic cancer. The growing interest in EVs as a nexus for therapeutic intervention was paralleled by formation of companies and funding programs focused on development of EVs as biomarkers or therapies of disease, the founding of an International Society for Extracellular Vesicles (ISEV), and establishment of a scientific journal devoted to the field, the Journal of Extracellular Vesicles.

↑ Return to Menu

Ceramide in the context of Sphingolipidoses

Sphingolipidoses are a class of lipid storage disorders or degenerative storage disorders caused by deficiency of an enzyme that is required for the catabolism of lipids that contain ceramide, also relating to sphingolipid metabolism. The main members of this group are Niemann–Pick disease, Fabry disease, Krabbe disease, Gaucher disease, Tay–Sachs disease and metachromatic leukodystrophy. They are generally inherited in an autosomal recessive fashion, but notably Fabry disease is X-linked recessive. Taken together, sphingolipidoses have an incidence of approximately 1 in 10,000, but substantially more in certain populations such as Ashkenazi Jews. Enzyme replacement therapy is available to treat mainly Fabry disease and Gaucher disease, and people with these types of sphingolipidoses may live well into adulthood. The other types are generally fatal by age 1 to 5 years for infantile forms, but progression may be mild for juvenile- or adult-onset forms.

↑ Return to Menu

Ceramide in the context of Sphingomyelin

Sphingomyelin (SPH, /ˌsfɪŋɡˈməlɪn/) is a type of sphingolipid found in animal cell membranes, especially in the membranous myelin sheath that surrounds some nerve cell axons. It usually consists of phosphocholine and ceramide, or a phosphoethanolamine head group; therefore, sphingomyelins can also be classified as sphingophospholipids. In humans, SPH represents ~85% of all sphingolipids, and typically makes up 10–20 mol % of plasma membrane lipids.

Sphingomyelin was first isolated by German chemist Johann L.W. Thudicum in the 1880s. The structure of sphingomyelin was first reported in 1927 as N-acyl-sphingosine-1-phosphorylcholine. Sphingomyelin content in mammals ranges from 2 to 15% in most tissues, with higher concentrations found in nerve tissues, red blood cells, and the ocular lenses. Sphingomyelin has significant structural and functional roles in the cell. It is a plasma membrane component and participates in many signaling pathways. The metabolism of sphingomyelin creates many products that play significant roles in the cell.

↑ Return to Menu

Ceramide in the context of Cerebroside

Cerebrosides (monoglycosylceramides) are a group of glycosphingolipids which are important components of animal muscle and nerve cell membranes.

They consist of a ceramide with a single sugar residue at the 1-hydroxyl moiety. The sugar residue can be either glucose or galactose; the two major types are therefore called glucocerebrosides (a.k.a. glucosylceramides) and galactocerebrosides (a.k.a. galactosylceramides). Galactocerebrosides are typically found in neural tissue, while glucocerebrosides are found in other tissues.

↑ Return to Menu

Ceramide in the context of Globoside

Globosides (also known as globo-series glycosphingolipids) are a sub-class of the lipid class glycosphingolipid with three to nine sugar molecules as the side chain (or R group) of ceramide. The sugars are usually a combination of N-acetylgalactosamine, D-glucose or D-galactose. One characteristic of globosides is that the "core" sugars consists of Glucose-Galactose-Galactose (Ceramide-βGlc4-1βGal4-1αGal), like in the case of the most basic globoside, globotriaosylceramide (Gb3), also known as pk-antigen. Another important characteristic of globosides is that they are neutral at pH 7, because they usually do not contain neuraminic acid, a sugar with an acidic carboxy-group. However, some globosides with the core structure Cer-Glc-Gal-Gal do contain neuraminic acid, e.g. the globo-series glycosphingolipid "SSEA-4-antigen".

The side chain can be cleaved by galactosidases and glucosidases. The deficiency of α-galactosidase A causes Fabry's disease, an inherited metabolic disease characterized by the accumulation of the globoside globotriaosylceramide.

↑ Return to Menu