Centimetre–gram–second system of units in the context of "Pascal (unit)"

Play Trivia Questions online!

or

Skip to study material about Centimetre–gram–second system of units in the context of "Pascal (unit)"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Centimetre–gram–second system of units in the context of Pascal (unit)

The pascal (symbol: Pa) is the unit of pressure in the International System of Units (SI). It is also used to quantify internal pressure, stress, Young's modulus, and ultimate tensile strength. The unit, named after Blaise Pascal, is an SI coherent derived unit defined as one newton per square metre (N/m). It is also equivalent to 10 barye (10 Ba) in the CGS system. Common multiple units of the pascal are the hectopascal (1 hPa = 100 Pa), which is equal to one millibar, and the kilopascal (1 kPa = 1,000 Pa), which is equal to one centibar.

The unit of measurement called standard atmosphere (atm) is defined as 101325 Pa.Meteorological observations typically report atmospheric pressure in hectopascals per the recommendation of the World Meteorological Organization, thus a standard atmosphere or typical sea-level air pressure is about 1,013 hPa. Reports in the United States typically use inches of mercury or millibars (hectopascals). In Canada, these reports are given in kilopascals.

↓ Explore More Topics
In this Dossier

Centimetre–gram–second system of units in the context of Absorbed dose

Absorbed dose is a dose quantity which represents the specific energy (energy per unit mass) deposited by ionizing radiation in living matter. Absorbed dose is used in the calculation of dose uptake in living tissue in both radiation protection (reduction of harmful effects), and radiation oncology (potential beneficial effects, for example in cancer treatment). It is also used to directly compare the effect of radiation on inanimate matter such as in radiation hardening.

The SI unit of measure is the gray (Gy), which is defined as one joule of energy absorbed per kilogram of matter. The older, non-SI CGS unit rad, is sometimes also used, predominantly in the USA.

↑ Return to Menu

Centimetre–gram–second system of units in the context of Irradiance

In radiometry, irradiance is the radiant flux received by a surface per unit area. The SI unit of irradiance is the watt per square metre (symbol W⋅m or W/m). The CGS unit erg per square centimetre per second (erg⋅cm⋅s) is often used in astronomy. Irradiance is often called intensity, but this term is avoided in radiometry where such usage leads to confusion with radiant intensity. In astrophysics, irradiance is called radiant flux.

Spectral irradiance is the irradiance of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The two forms have different dimensions and units: spectral irradiance of a frequency spectrum is measured in watts per square metre per hertz (W⋅m⋅Hz), while spectral irradiance of a wavelength spectrum is measured in watts per square metre per metre (W⋅m), or more commonly watts per square metre per nanometre (W⋅m⋅nm).

↑ Return to Menu

Centimetre–gram–second system of units in the context of Centimetre

A centimetre (International spelling) or centimeter (American English), with SI symbol cm, is a unit of length in the International System of Units (SI) equal to one hundredth of a metre, centi- being the SI prefix for a factor of 1/100. Equivalently, there are 100 centimetres in 1 metre. The centimetre was the base unit of length in the now deprecated centimetre–gram–second (CGS) system of units.

Though for many physical quantities, SI prefixes for factors of 10—like milli- and kilo-—are often preferred by technicians, the centimetre remains a practical unit of length for many everyday measurements; for instance, human height is commonly measured in centimetres. A centimetre is approximately the width of the fingernail of an average adult person.

↑ Return to Menu

Centimetre–gram–second system of units in the context of Radiant emittance

In radiometry, radiant exitance or radiant emittance is the radiant flux emitted by a surface per unit area, whereas spectral exitance or spectral emittance is the radiant exitance of a surface per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. This is the emitted component of radiosity. The SI unit of radiant exitance is the watt per square metre (W/m), while that of spectral exitance in frequency is the watt per square metre per hertz (W·m·Hz) and that of spectral exitance in wavelength is the watt per square metre per metre (W·m)—commonly the watt per square metre per nanometre (W·m·nm). The CGS unit erg per square centimeter per second (erg·cm·s) is often used in astronomy. Radiant exitance is often called "intensity" in branches of physics other than radiometry, but in radiometry this usage leads to confusion with radiant intensity.

↑ Return to Menu

Centimetre–gram–second system of units in the context of Radiosity (heat transfer)

↑ Return to Menu

Centimetre–gram–second system of units in the context of Metric units

Metric units are units based on the metre, gram or second and decimal (power of ten) multiples or sub-multiples of these. According to Schadow and McDonald, metric units, in general, are those units "defined 'in the spirit' of the metric system, that emerged in late 18th century France and was rapidly adopted by scientists and engineers. Metric units are in general based on reproducible natural phenomena and are usually not part of a system of comparable units with different magnitudes, especially not if the ratios of these units are not powers of 10. Instead, metric units use multiplier prefixes that magnifies or diminishes the value of the unit by powers of ten." The most widely used examples are the units of the International System of Units (SI). By extension they include units of electromagnetism from the CGS and SI units systems, and other units for which use of SI prefixes has become the norm. Other unit systems using metric units include:

↑ Return to Menu