Celsius in the context of Frozen water


Celsius in the context of Frozen water

Celsius Study page number 1 of 4

Play TriviaQuestions Online!

or

Skip to study material about Celsius in the context of "Frozen water"


⭐ Core Definition: Celsius

The degree Celsius is the unit of temperature on the Celsius temperature scale (originally known as the centigrade scale outside Sweden), one of two temperature scales used in the International System of Units (SI), the other being the closely related Kelvin scale. The degree Celsius (symbol: °C) can refer to a specific point on the Celsius temperature scale or to a difference or range between two temperatures. It is named after the Swedish astronomer Anders Celsius (1701–1744), who proposed the first version of it in 1742. The unit was called centigrade in several languages (from the Latin centum, which means 100, and gradus, which means steps) for many years. In 1948, the International Committee for Weights and Measures renamed it to honor Celsius and also to remove confusion with the term for one hundredth of a gradian in some languages. Most countries use this scale, with the exception of the United States, some island territories, and Liberia, where the Fahrenheit scale is still used.

Throughout the 19th and the first half of the 20th centuries, the scale was based on 0 °C for the freezing point of water and 100 °C for the boiling point of water at 1 atm pressure. (In Celsius's initial proposal, the values were reversed: the boiling point was 0 degrees and the freezing point was 100 degrees.)

↓ Menu
HINT:

In this Dossier

Celsius in the context of Temperature

Temperature quantitatively expresses the attribute of hotness or coldness. Temperature is measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making up a substance.

Thermometers are calibrated in various temperature scales that historically have relied on various reference points and thermometric substances for definition. The most common scales are the Celsius scale with the unit symbol °C (formerly called centigrade), the Fahrenheit scale (°F), and the Kelvin scale (K), with the third being used predominantly for scientific purposes. The kelvin is one of the seven base units in the International System of Units (SI).

View the full Wikipedia page for Temperature
↑ Return to Menu

Celsius in the context of Ice

Ice is water that is frozen into a solid state, typically forming at or below temperatures of 0 °C, 32 °F, or 273.15 K. It occurs naturally on Earth, on other planets, in Oort cloud objects, and as interstellar ice. As a naturally occurring crystalline inorganic solid with an ordered structure, ice is considered to be a mineral. Depending on the presence of impurities such as particles of soil or bubbles of air, it can appear transparent or a more or less opaque bluish-white color.

Virtually all of the ice on Earth is of a hexagonal crystalline structure denoted as ice Ih (spoken as "ice one h"). Depending on temperature and pressure, at least nineteen phases (packing geometries) can exist. The most common phase transition to ice Ih occurs when liquid water is cooled below °C (273.15 K, 32 °F) at standard atmospheric pressure. When water is cooled rapidly (quenching), up to three types of amorphous ice can form. Interstellar ice is overwhelmingly low-density amorphous ice (LDA), which likely makes LDA ice the most abundant type in the universe. When cooled slowly, correlated proton tunneling occurs below −253.15 °C (20 K, −423.67 °F) giving rise to macroscopic quantum phenomena.

View the full Wikipedia page for Ice
↑ Return to Menu

Celsius in the context of Solar thermal energy

Solar thermal energy (STE) is a form of energy and a technology for harnessing solar energy to generate thermal energy for use in industry, and in the residential and commercial sectors. Solar thermal collectors are classified by the United States Energy Information Administration as low-, medium-, or high-temperature collectors. Low-temperature collectors are generally unglazed and used to heat swimming pools or to heat ventilation air. Medium-temperature collectors are also usually flat plates but are used for heating water or air for residential and commercial use.

High-temperature collectors concentrate sunlight using mirrors or lenses and are generally used for fulfilling heat requirements up to 300 °C (600 °F) / 20 bar (300 psi) pressure in industries, and for electric power production. Two categories include Concentrated Solar Thermal (CST) for fulfilling heat requirements in industries, and concentrated solar power (CSP) when the heat collected is used for electric power generation. CST and CSP are not replaceable in terms of application.

View the full Wikipedia page for Solar thermal energy
↑ Return to Menu

Celsius in the context of Negative number

In mathematics, a negative number is the opposite of a positive real number. Equivalently, a negative number is a real number that is less than zero. Negative numbers are often used to represent the magnitude of a loss or deficiency. A debt that is owed may be thought of as a negative asset. If a quantity, such as the charge on an electron, may have either of two opposite senses, then one may choose to distinguish between those senses—perhaps arbitrarily—as positive and negative. Negative numbers are used to describe values on a scale that goes below zero, such as the Celsius and Fahrenheit scales for temperature. The laws of arithmetic for negative numbers ensure that the common-sense idea of an opposite is reflected in arithmetic. For example, −(−3) = 3 because the opposite of an opposite is the original value.

Negative numbers are usually written with a minus sign in front. For example, −3 represents a negative quantity with a magnitude of three, and is pronounced and read as "minus three" or "negative three". Conversely, a number that is greater than zero is called positive; zero is usually (but not always) thought of as neither positive nor negative. The positivity of a number may be emphasized by placing a plus sign before it, e.g. +3. In general, the negativity or positivity of a number is referred to as its sign.

View the full Wikipedia page for Negative number
↑ Return to Menu

Celsius in the context of Enceladus

Enceladus is the sixth-largest moon of Saturn and the 18th largest in the Solar System. It is about 500 kilometres (310 miles) in diameter, about a tenth of that of Saturn's largest moon, Titan. It is covered by clean, freshly deposited snow hundreds of meters thick, making it one of the most reflective bodies of the Solar System. Consequently, its surface temperature at noon reaches only −198 °C (75.1 K; −324.4 °F), far colder than a light-absorbing body would be. Despite its small size, Enceladus has a wide variety of surface features, ranging from old, heavily cratered regions to young, tectonically deformed terrain.

Enceladus was discovered on August 28, 1789, by William Herschel, but little was known about it until the two Voyager spacecrafts, Voyager 1 and Voyager 2, flew by Saturn in 1980 and 1981. In 2005, the spacecraft Cassini started multiple close flybys of Enceladus, revealing its surface and environment in greater detail. In particular, Cassini discovered water-rich plumes venting from the south polar region. Cryovolcanoes near the south pole shoot geyser-like jets of water vapour, molecular hydrogen, other volatiles, and solid material, including sodium chloride crystals and ice particles, into space, totalling about 200 kilograms (440 pounds) per second. More than 100 geysers have been identified. Some of the water vapour falls back as snow, now several hundred metres thick; the rest escapes and supplies most of the material making up Saturn's E ring. According to NASA scientists, the plumes are similar in composition to comets. In 2014, NASA reported that Cassini had found evidence for a large south polar subsurface ocean of liquid water with a thickness of around 10 km (6 mi). The existence of Enceladus's subsurface ocean has since been mathematically modelled and replicated.

View the full Wikipedia page for Enceladus
↑ Return to Menu

Celsius in the context of Gas giant

A gas giant is a giant planet composed mainly of hydrogen and helium. Jupiter and Saturn are the gas giants of the Solar System. The term "gas giant" was originally synonymous with "giant planet". However, in the 1990s, it became known that Uranus and Neptune are a distinct class of giant planets composed mainly of heavier volatile substances (referred to as "ices"). For this reason, Uranus and Neptune are often classified in the separate category of ice giants.

Jupiter and Saturn consist mostly of hydrogen and helium, with heavier elements making up between 3 and 13 percent of their mass. They are thought to have an outer layer of compressed molecular hydrogen surrounding a layer of liquid metallic hydrogen, with a molten rocky core inside. The outermost portion of their hydrogen atmosphere contains many layers of visible clouds that are mostly composed of water and ammonia. The layer of metallic hydrogen located in the mid-interior makes up the bulk of every gas giant and is referred to as "metallic" because the very high atmospheric pressure turns hydrogen into an electrical conductor. The gas giants' cores are thought to consist of heavier elements at such high temperatures (20,000 K [19,700 °C; 35,500 °F]) and pressures that their properties are not yet completely understood. The placement of the solar system's gas giants can be explained by the grand tack hypothesis.

View the full Wikipedia page for Gas giant
↑ Return to Menu

Celsius in the context of HD 209458 b

HD 209458 b is an exoplanet, specifically a hot Jupiter, that orbits the solar analog HD 209458 in the constellation Pegasus, some 157 light-years (48 parsecs) from the Solar System. It is sometimes informally called Osiris. The radius of the planet's orbit is 0.047 AU (7.0 million km; 4.4 million mi), or one-eighth the radius of Mercury's orbit (0.39 AU (36 million mi; 58 million km)). This small orbital distance results in a year that is 3.5 Earth-days long and an estimated surface temperature of about 1,000 °C (1,800 °F; 1,300 K). Its mass is 220 times that of Earth (0.69 Jupiter masses) and its volume is some 2.5 times greater than that of Jupiter. The high mass and volume of HD 209458 b indicate that it is a gas giant.

HD 209458 b represents a number of milestones in exoplanetary research. It was the first of many categories:

View the full Wikipedia page for HD 209458 b
↑ Return to Menu

Celsius in the context of Temperature scale

Scale of temperature is a methodology of calibrating the physical quantity temperature in metrology. Empirical scales measure temperature in relation to convenient and stable parameters or reference points, such as the freezing and boiling point of water. Absolute temperature is based on thermodynamic principles: using the lowest possible temperature as the zero point, and selecting a convenient incremental unit.

Celsius, Kelvin, and Fahrenheit are common temperature scales. Other scales used throughout history include Rankine, Rømer, Newton, Delisle, Réaumur, Gas mark, Leiden, and Wedgwood.

View the full Wikipedia page for Temperature scale
↑ Return to Menu

Celsius in the context of Kelvin

The kelvin (symbol: K) is the base unit for temperature in the International System of Units (SI). The Kelvin scale is an absolute temperature scale that starts at the lowest possible temperature (absolute zero), taken to be 0 K. By definition, the Celsius scale (symbol °C) and the Kelvin scale have the exact same magnitude; that is, a rise of 1 K is equal to a rise of 1 °C and vice versa, and any temperature in degrees Celsius can be converted to kelvin by adding 273.15.

The 19th century British scientist Lord Kelvin first developed and proposed the scale. It was often called the "absolute Celsius" scale in the early 20th century. The kelvin was formally added to the International System of Units in 1954, defining 273.16 K to be the triple point of water. The Celsius, Fahrenheit, and Rankine scales were redefined in terms of the Kelvin scale using this definition. The 2019 revision of the SI now defines the kelvin in terms of energy by setting the Boltzmann constant; every 1 K change of thermodynamic temperature corresponds to a change in the thermal energy, kBT, of exactly 1.380649×10 joules.

View the full Wikipedia page for Kelvin
↑ Return to Menu

Celsius in the context of Thermocouple

A thermocouple, also known as a thermoelectrical thermometer, is an electrical device consisting of two dissimilar electrical conductors forming an electrical junction. A thermocouple produces a temperature-dependent voltage as a result of the Seebeck effect, and this voltage can be interpreted to measure temperature. Thermocouples are widely used as temperature sensors.

Commercial thermocouples are inexpensive, interchangeable, are supplied with standard connectors, and can measure a wide range of temperatures. In contrast to most other methods of temperature measurement, thermocouples are self-powered and require no external form of excitation. The main limitation with thermocouples is accuracy; system errors of less than one degree Celsius (°C) can be difficult to achieve.

View the full Wikipedia page for Thermocouple
↑ Return to Menu

Celsius in the context of Metric unit

The metric system is a system of measurement that standardises a set of base units and a nomenclature for describing relatively large and small quantities via decimal-based multiplicative unit prefixes. Though the rules governing the metric system have changed over time, the modern definition, the International System of Units (SI), defines the metric prefixes and seven base units: metre (m), kilogram (kg), second (s), ampere (A), kelvin (K), mole (mol), and candela (cd).

An SI derived unit is a named combination of base units such as hertz (cycles per second), newton (kg⋅m/s), and tesla (1 kg⋅s⋅A) and in the case of Celsius a shifted scale from Kelvin. Certain units have been officially accepted for use with the SI. Some of these are decimalised, like the litre and electronvolt, and are considered "metric". Others, like the astronomical unit are not. Ancient non-metric but SI-accepted multiples of time, minute and hour, are base 60 (sexagesimal). Similarly, the angular measure degree and submultiples, arcminute, and arcsecond, are also sexagesimal and SI-accepted.

View the full Wikipedia page for Metric unit
↑ Return to Menu

Celsius in the context of Divjakë-Karavasta National Park

Divjakë-Karavasta National Park (Albanian: Parku Kombëtar Divjakë-Karavasta) is a national park in western Albania, sprawling across the Myzeqe Plain in the direct proximity to the Adriatic Sea. The park spans a territory of 222.3 square kilometres (22,230 ha) containing remarkable features such as wetlands, salt marshes, coastal meadows, floodplains, woodlands, reed beds, forests and estuaries. Because of the park's important and great availability of bird and plant species, it has been identified as an important Bird and Plant Area of international importance.

Among the largest in the Mediterranean Sea, the lagoon of Karavasta has been recognised as a wetland of international importance by designation under the Ramsar Convention. It is separated from the Adriatic Sea by a large strip of sand and was formed by the sediments of which has been discharged by the rivers Shkumbin and Seman. Located near the sea, the park experiences mediterranean climate, with temperatures that ranges between 12 °C (54 °F) in February and 24 °C (75 °F) in August.

View the full Wikipedia page for Divjakë-Karavasta National Park
↑ Return to Menu

Celsius in the context of Upper Thracian Plain

42°15′N 26°0′E / 42.250°N 26.000°E / 42.250; 26.000

The Upper Thracian Plain (Bulgarian: Горнотракийска низина, Gornotrakiyska nizina) constitutes the northern part of the historical region of Thrace. It is located in southern Bulgaria, between Sredna Gora mountains to the north and west, a secondary mountain chain parallel to the main Balkan Mountains; the Rhodopes, Sakar and Strandzha to the south; and the Black Sea to the east. A fertile agricultural region, the Upper Thracian Plain proper has an area of 16,032 square kilometres (6,190 sq mi) and an average elevation of 168 metres (551 ft). The plain is part of Northern Thrace. The climate is transitional continental. The highest temperature recorded in Bulgaria occurred here: it was 45.2 °C (113.4 °F) at Sadovo in 1916. The precipitation is 550 millimetres (22 in) a year. Important rivers are the Maritsa and its tributaries, Arda, Tundzha, Stryama, Topolnitsa, and Vacha. Important cities include Plovdiv, Burgas, Stara Zagora, Pazardzhik, Asenovgrad, Haskovo, Yambol and Sliven.

View the full Wikipedia page for Upper Thracian Plain
↑ Return to Menu

Celsius in the context of Asturias

Asturias (/æˈstʊəriəs, ə-/; Spanish: [asˈtuɾjas]; Asturian: Asturies [asˈtuɾjes; -ɾjɪs]) officially the Principality of Asturias, is an autonomous community in northwest Spain.It is coextensive with the province of Asturias and contains some of the territory that was part of the larger Kingdom of Asturias in the Middle Ages. Divided into eight comarcas (counties), the autonomous community of Asturias is bordered by Cantabria to the east, by León (Castile and León) to the south, by Lugo (Galicia) to the west, and by the Cantabrian Sea to the north.

Asturias is situated in a mountainous setting with vast greenery and lush vegetation, making it part of Green Spain. The region has a maritime climate. It receives plenty of annual rainfall and little sunshine by Spanish standards and has very moderate seasons, most often averaging in the lower 20s Celsius. Heat waves are rare due to mountains blocking southerly winds. Winters are very mild for the latitude, especially near sea level.

View the full Wikipedia page for Asturias
↑ Return to Menu

Celsius in the context of Yard

The yard (symbol: yd) is an English unit of length in both the British imperial and US customary systems of measurement equalling 3 feet or 36 inches. Since 1959 it has been by international agreement standardized as exactly 0.9144 meter. A distance of 1,760 yards is equal to 1 mile.

The theoretical US survey yard is very slightly longer.

View the full Wikipedia page for Yard
↑ Return to Menu

Celsius in the context of Absolute zero

Absolute zero is the lowest possible temperature, a state at which a system's internal energy, and in ideal cases entropy, reach their minimum values. The Kelvin scale is defined so that absolute zero is 0 K, equivalent to −273.15 °C on the Celsius scale, and −459.67 °F on the Fahrenheit scale. The Kelvin and Rankine temperature scales set their zero points at absolute zero by definition. This limit can be estimated by extrapolating the ideal gas law to the temperature at which the volume or pressure of a classical gas becomes zero.

Although absolute zero can be approached, it cannot be reached. Some isentropic processes, such as adiabatic expansion, can lower the system's temperature without relying on a colder medium. Nevertheless, the third law of thermodynamics implies that no physical process can reach absolute zero in a finite number of steps. As a system nears this limit, further reductions in temperature become increasingly difficult, regardless of the cooling method used. In the 21st century, scientists have achieved temperatures below 100 picokelvin (pK). At these low temperatures, matter displays exotic quantum mechanical phenomena such as superconductivity, superfluidity, and Bose–Einstein condensation. The particles still exhibit zero-point energy motion, as mandated by the Heisenberg uncertainty principle and, for a system of fermions, the Pauli exclusion principle.

View the full Wikipedia page for Absolute zero
↑ Return to Menu

Celsius in the context of Rankine scale

The Rankine scale (/ˈræŋkɪn/ RANG-kin) is an absolute scale of thermodynamic temperature named after the University of Glasgow engineer and physicist W. J. M. Rankine, who proposed it in 1859. Similar to the Kelvin scale, which was first proposed in 1848, zero on the Rankine scale is absolute zero, but a temperature difference of one Rankine degree (°R or °Ra) is defined as equal to one Fahrenheit degree, rather than the Celsius degree used on the Kelvin scale. In converting from kelvin to degrees Rankine, 1 °R = 5/9 K or 1 K = 1.8 °R. A temperature of 0 K (−273.15 °C; −459.67 °F) is equal to 0 °R.

View the full Wikipedia page for Rankine scale
↑ Return to Menu

Celsius in the context of William Thomson, 1st Baron Kelvin

William Thomson, 1st Baron Kelvin (26 June 1824 – 17 December 1907), was a British mathematician, mathematical physicist and engineer. Born in Belfast, he was for 53 years the professor of Natural Philosophy at the University of Glasgow, where he undertook significant research on the mathematical analysis of electricity, was instrumental in the formulation of the first and second laws of thermodynamics, and contributed significantly to unifying physics, which was then in its infancy of development as an emerging academic discipline. He received the Royal Society's Copley Medal in 1883 and served as its president from 1890 to 1895. In 1892 he became the first scientist to be elevated to the House of Lords.

Absolute temperatures are stated in units of kelvin in Lord Kelvin's honour. While the existence of a coldest possible temperature, absolute zero, was known before his work, Kelvin determined its correct value as approximately −273.15 degrees Celsius or −459.67 degrees Fahrenheit. The Joule–Thomson effect is also named in his honour.

View the full Wikipedia page for William Thomson, 1st Baron Kelvin
↑ Return to Menu