Bose–Einstein condensation in the context of "Absolute zero"

Play Trivia Questions online!

or

Skip to study material about Bose–Einstein condensation in the context of "Absolute zero"

Ad spacer

⭐ Core Definition: Bose–Einstein condensation

In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low densities is cooled to temperatures very close to absolute zero, i.e. 0 K (−273.15 °C; −459.67 °F). Under such conditions, a large fraction of bosons occupy the lowest quantum state, at which microscopic quantum-mechanical phenomena, particularly wavefunction interference, become apparent macroscopically.More generally, condensation refers to the appearance of macroscopic occupation of one or several states: for example, in BCS theory, a superconductor is a condensate of Cooper pairs. As such, condensation can be associated with phase transition, and the macroscopic occupation of the state is the order parameter.

Bose–Einstein condensates were first predicted, generally, in 1924–1925 by Albert Einstein, crediting a pioneering paper by Satyendra Nath Bose on the new field now known as quantum statistics. In 1995, the Bose–Einstein condensate was created by Eric Cornell and Carl Wieman of the University of Colorado Boulder using rubidium atoms. Later that year, Wolfgang Ketterle of MIT produced a BEC using sodium atoms. In 2001 Cornell, Wieman, and Ketterle shared the Nobel Prize in Physics "for the achievement of Bose–Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates".

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Bose–Einstein condensation in the context of Absolute zero

Absolute zero is the lowest possible temperature, a state at which a system's internal energy, and in ideal cases entropy, reach their minimum values. The Kelvin scale is defined so that absolute zero is 0 K, equivalent to −273.15 °C on the Celsius scale, and −459.67 °F on the Fahrenheit scale. The Kelvin and Rankine temperature scales set their zero points at absolute zero by definition. This limit can be estimated by extrapolating the ideal gas law to the temperature at which the volume or pressure of a classical gas becomes zero.

Although absolute zero can be approached, it cannot be reached. Some isentropic processes, such as adiabatic expansion, can lower the system's temperature without relying on a colder medium. Nevertheless, the third law of thermodynamics implies that no physical process can reach absolute zero in a finite number of steps. As a system nears this limit, further reductions in temperature become increasingly difficult, regardless of the cooling method used. In the 21st century, scientists have achieved temperatures below 100 picokelvin (pK). At these low temperatures, matter displays exotic quantum mechanical phenomena such as superconductivity, superfluidity, and Bose–Einstein condensation. The particles still exhibit zero-point energy motion, as mandated by the Heisenberg uncertainty principle and, for a system of fermions, the Pauli exclusion principle.

↓ Explore More Topics
In this Dossier

Bose–Einstein condensation in the context of Magnetic trap (atoms)

In experimental physics, a magnetic trap is an apparatus which uses a magnetic field gradient to trap neutral particles with magnetic moments. Although such traps have been employed for many purposes in physics research, they are best known as the last stage in cooling atoms to achieve Bose–Einstein condensation. The magnetic trap (as a way of trapping very cold atoms) was first proposed by David E. Pritchard.

↑ Return to Menu