Cell signalling in the context of Fibroblast growth factor


Cell signalling in the context of Fibroblast growth factor

Cell signalling Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Cell signalling in the context of "Fibroblast growth factor"


HINT:

👉 Cell signalling in the context of Fibroblast growth factor

Fibroblast growth factors (FGF) are a family of cell signalling proteins produced by the macrophages. They are involved in a wide variety of processes, most notably as crucial elements for normal development in animal cells. Any irregularities in their function will lead to a range of developmental defects. These growth factors typically act as a systemic or locally circulating molecules of extracellular origin that activate cell surface receptors. A defining property of FGFs is that they bind to heparin and to heparan sulfate. Thus, some are sequestered in the extracellular matrix of tissues that contains heparan sulfate proteoglycans, and released locally upon injury or tissue remodeling.

↓ Explore More Topics
In this Dossier

Cell signalling in the context of Kinases

In biochemistry, a kinase (/ˈkaɪneɪs, ˈkɪneɪs, -eɪz/) is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule donates a phosphate group to the substrate molecule. As a result, kinase produces a phosphorylated substrate and ADP. Conversely, it is referred to as dephosphorylation when the phosphorylated substrate donates a phosphate group and ADP gains a phosphate group (producing a dephosphorylated substrate and the high energy molecule of ATP). These two processes, phosphorylation and dephosphorylation, occur four times during glycolysis.

Kinases are part of the larger family of phosphotransferases. Kinases should not be confused with phosphorylases, which catalyze the addition of inorganic phosphate groups to an acceptor, nor with phosphatases, which remove phosphate groups (dephosphorylation). The phosphorylation state of a molecule, whether it be a protein, lipid or carbohydrate, can affect its activity, reactivity and its ability to bind other molecules. Therefore, kinases are critical in metabolism, cell signalling, protein regulation, cellular transport, secretory processes and many other cellular pathways, which makes them very important to physiology.

View the full Wikipedia page for Kinases
↑ Return to Menu

Cell signalling in the context of Low density lipoprotein receptor gene family

The low-density lipoprotein receptor gene family codes for a class of structurally related cell surface receptors that fulfill diverse biological functions in different organs, tissues, and cell types. The role that is most commonly associated with this evolutionarily ancient family is cholesterol homeostasis (maintenance of appropriate concentration of cholesterol). In humans, excess cholesterol in the blood is captured by low-density lipoprotein (LDL) and removed by the liver via endocytosis of the LDL receptor. Recent evidence indicates that the members of the LDL receptor gene family are active in the cell signalling pathways between specialized cells in many, if not all, multicellular organisms.

There are seven members of the LDLR family in mammals, namely:

View the full Wikipedia page for Low density lipoprotein receptor gene family
↑ Return to Menu