Cell migration in the context of "DISC1"

Play Trivia Questions online!

or

Skip to study material about Cell migration in the context of "DISC1"




⭐ Core Definition: Cell migration

Cell migration is a central process in the development and maintenance of multicellular organisms. Tissue formation during embryonic development, wound healing and immune responses all require the orchestrated movement of cells in particular directions to specific locations. Cells often migrate in response to specific external signals, including chemical signals and mechanical signals. Errors during this process have serious consequences, including intellectual disability, vascular disease, tumor formation and metastasis. An understanding of the mechanism by which cells migrate may lead to the development of novel therapeutic strategies for controlling, for example, invasive tumour cells.

Due to the highly viscous environment (low Reynolds number), cells need to continuously produce forces in order to move. Cells achieve active movement by very different mechanisms. Many less complex prokaryotic organisms (and sperm cells) use flagella or cilia to propel themselves. Eukaryotic cell migration typically is far more complex and can consist of combinations of different migration mechanisms. It generally involves drastic changes in cell shape which are driven by the cytoskeleton. Two very distinct migration scenarios are crawling motion (most commonly studied) and blebbing motility. A paradigmatic example of crawling motion is the case of fish epidermal keratocytes, which have been extensively used in research and teaching.

↓ Menu

👉 Cell migration in the context of DISC1

Disrupted in schizophrenia 1 is a protein that in humans is encoded by the DISC1 gene. In coordination with a wide array of interacting partners, DISC1 has been shown to participate in the regulation of cell proliferation, differentiation, migration, neuronal axon and dendrite outgrowth, mitochondrial transport, fission and/or fusion, and cell-to-cell adhesion. Several studies have shown that unregulated expression or altered protein structure of DISC1 may predispose individuals to the development of schizophrenia, clinical depression, bipolar disorder, and other psychiatric conditions. The cellular functions that are disrupted by permutations in DISC1, which lead to the development of these disorders, have yet to be clearly defined and are the subject of current ongoing research. Although recent genetic studies of large schizophrenia cohorts have failed to implicate DISC1 as a risk gene at the gene level, the DISC1 interactome gene set was associated with schizophrenia, showing evidence from genome-wide association studies of the role of DISC1 and interacting partners in schizophrenia susceptibility.

↓ Explore More Topics
In this Dossier

Cell migration in the context of Cell adhesion

Cell adhesion is the process by which cells interact and attach to neighbouring cells through specialised molecules of the cell surface. This process can occur either through direct contact between cell surfaces such as cell junctions or indirect interaction, where cells attach to surrounding extracellular matrix (ECM), a gel-like structure containing molecules released by cells into spaces between them. Cell adhesion occurs from the interactions between cell adhesion molecules (CAMs), transmembrane proteins located in the cell membrane. Cell adhesion links cells in different ways and can be involved in signal transduction for cells to detect and respond to changes in the surroundings. Other cellular processes regulated by cell adhesion include cell migration and tissue development in multicellular organisms. Alterations in cell adhesion can disrupt important cellular processes and lead to a variety of diseases, including cancer and arthritis. Cell adhesion is also essential for infectious organisms, such as bacteria or viruses, to cause disease.

↑ Return to Menu

Cell migration in the context of Transcription factor

In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The function of TFs is to regulate—turn on and off—genes in order to make sure that they are expressed in the desired cells at the right time and in the right amount throughout the life of the cell and the organism. Groups of TFs function in a coordinated fashion to direct cell division, cell growth, and cell death throughout life; cell migration and organization (body plan) during embryonic development; and intermittently in response to signals from outside the cell, such as a hormone. There are approximately 1600 TFs in the human genome, where half of them are C2H2 zinc fingers. Transcription factors are members of the proteome as well as regulome.

TFs work alone or with other proteins in a complex, by promoting (as an activator), or blocking (as a repressor) the recruitment of RNA polymerase (the enzyme that performs the transcription of genetic information from DNA to RNA) to specific genes.

↑ Return to Menu

Cell migration in the context of Adherent culture

Adherent cell cultures are a type of cell culture that requires cells to be attached to a surface in order for growth to occur. Most vertebrate-derived cells (with the exception of hematopoietic cells) are anchorage dependent and require a two-dimensional monolayer to facilitate cell adhesion, spreading and replication. Cell samples can be taken from tissue explants or cell suspension cultures. Adherent cell cultures with an excess of nutrient-containing growth medium will continue to grow until they cover the available surface area. Proteases like trypsin are most commonly used to break the adhesion from the cells to the flask. Alternatively, cell scrapers can be used to mechanically break the adhesion if introducing proteases could damage the cell cultures. Unlike suspension cultures, the other main type of cell culture, adherent cultures require regular passaging performed using mechanical or enzymatic dissociation. The culture can be visualized using an inverted microscope, however the growth of adherent cultures is dependent on the available surface area. For this reason, adherent cell cultures are not commonly used to obtain a high yield of cells, instead the use of suspension cultures is preferred.

↑ Return to Menu

Cell migration in the context of Invasion (cancer)

Invasion is the process by which cancer cells directly extend and penetrate into neighboring tissues in cancer. It is generally distinguished from metastasis, which is the spread of cancer cells through the circulatory system or the lymphatic system to more distant locations. The two are nonetheless closely related, and lymphovascular invasion is generally the first step of metastasis.

The two main patterns of cancer cell invasion by cell migration are collective cell migration and individual cell migration, by which tumor cells overcome barriers of the extracellular matrix and spread into surrounding tissues. Either pattern of cell migration exhibits distinct morphological features and is governed by specific biochemical and molecular genetic mechanisms.

↑ Return to Menu