Cell fate determination in the context of "Pattern formation"

Play Trivia Questions online!

or

Skip to study material about Cell fate determination in the context of "Pattern formation"




⭐ Core Definition: Cell fate determination

Fate determination in developmental biology is the particular development of a specific cell type. In an embryo, several processes play out at a molecular level to create an organism. These processes include cell proliferation, differentiation, cellular movement and programmed cell death.

Each cell in an embryo receives molecular signals from neighboring cells in the form of proteins, RNAs and even surface interactions. Almost all animals undergo a similar sequence of events during very early development, a conserved process known as embryogenesis. During embryogenesis, cells exist in three germ layers, and undergo gastrulation. While embryogenesis has been studied for more than a century, it was only recently (the past 25 years or so) that scientists discovered that a basic set of the same proteins and mRNAs are involved in embryogenesis.

↓ Menu

👉 Cell fate determination in the context of Pattern formation

The science of pattern formation deals with the visible, (statistically) orderly outcomes of self-organization and the common principles behind similar patterns in nature.

In developmental biology, pattern formation refers to the generation of complex organizations of cell fates in space and time. The role of genes in pattern formation is an aspect of morphogenesis, the creation of diverse anatomies from similar genes, now being explored in the science of evolutionary developmental biology or evo-devo. The mechanisms involved are well seen in the anterior-posterior patterning of embryos from the model organism Drosophila melanogaster (a fruit fly), one of the first organisms to have its morphogenesis studied, and in the eyespots of butterflies, whose development is a variant of the standard (fruit fly) mechanism.

↓ Explore More Topics
In this Dossier

Cell fate determination in the context of Cell type

A cell type is a classification used to identify cells that share morphological or phenotypical features. A multicellular organism may contain cells of a number of widely differing and specialized cell types, such as muscle cells and skin cells, that differ both in appearance and function yet have identical genomic sequences. Cells may have the same genotype, but belong to different cell types due to the differential regulation of the genes they contain. Classification of a specific cell type is often done through the use of microscopy (such as those from the cluster of differentiation family that are commonly used for this purpose in immunology). Recent developments in single cell RNA sequencing facilitated classification of cell types based on shared gene expression patterns. This has led to the discovery of many new cell types in e.g. mouse grey matter, hippocampus, dorsal root ganglion and spinal cord.

Animals have evolved a greater diversity of cell types in a multicellular body (100–150 different cell types), comparedwith 10–20 in plants, fungi, and protists. The exact number of cell types is, however, undefined, and the Cell Ontology, as of 2021, lists over 2,300 different cell types.

↑ Return to Menu

Cell fate determination in the context of Homeobox protein NANOG

Homeobox protein NANOG (hNanog) is a transcriptional factor that helps embryonic stem cells (ESCs) maintain pluripotency by suppressing cell determination factors. hNanog is encoded in humans by the NANOG gene. Several types of cancer are associated with NANOG.

↑ Return to Menu