Celestial body in the context of "Lunar distance (navigation)"

Play Trivia Questions online!

or

Skip to study material about Celestial body in the context of "Lunar distance (navigation)"

Ad spacer

⭐ Core Definition: Celestial body

An astronomical object, celestial object, stellar object or heavenly object is a naturally occurring physical entity, association, or structure that exists within the observable universe. In astronomy, the terms object and body are often used interchangeably. However, an astronomical body, celestial body or heavenly body is a single, tightly bound, contiguous physical object, while an astronomical or celestial object admits a more complex, less cohesively bound structure, which may consist of multiple bodies or even other objects with substructures.

Examples of astronomical objects include planetary systems, star clusters, nebulae, and galaxies, while asteroids, moons, planets, and stars are astronomical bodies. A comet may be identified as both a body and an object: It is a body when referring to the frozen nucleus of ice and dust, and an object when describing the entire comet with its diffuse coma and tail.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

πŸ‘‰ Celestial body in the context of Lunar distance (navigation)

In celestial navigation, lunar distance, also called a lunar, is the angular distance between the Moon and another celestial body. The lunar distances method uses this angle and a nautical almanac to calculate Greenwich time if so desired, or by extension any other time. That calculated time can be used in solving a spherical triangle. The theory was first published by Johannes Werner in 1524, before the necessary almanacs had been published. A fuller method was published in 1763 and used until about 1850 when it was superseded by the marine chronometer. A similar method uses the positions of the Galilean moons of Jupiter.

↓ Explore More Topics
In this Dossier

Celestial body in the context of Celestial navigation

Celestial navigation, also known as astronavigation, is the practice of position fixing using stars and other celestial bodies that enables a navigator to accurately determine their actual current physical position in space or on the surface of the Earth without relying solely on estimated positional calculations, commonly known as dead reckoning. Celestial navigation is performed without using satellite navigation or other similar modern electronic or digital positioning means.

Celestial navigation uses "sights," or timed angular measurements, taken typically between a celestial body (e.g., the Sun, the Moon, a planet, or a star) and the visible horizon. Celestial navigation can also take advantage of measurements between celestial bodies without reference to the Earth's horizon, such as when the Moon and other selected bodies are used in the practice called "lunars" or the lunar distance method, used for determining precise time when time is unknown.

↑ Return to Menu

Celestial body in the context of Cave

Caves or caverns are natural voids under the surface of the Earth and have been observed in other rocky worlds also (viz. on Mars). Caves often form by the weathering of rock and can extend deep underground. Exogene caves are smaller openings that extend a relatively short distance underground (such as rock shelters). Caves which extend farther underground than the opening is wide are called endogene caves.

Speleology is the science of exploration and study of all aspects of caves and the cave environment. Visiting or exploring caves for recreation may be called caving, potholing, or spelunking.

↑ Return to Menu

Celestial body in the context of Solar year

A tropical year or solar year (or tropical period) is the time that the Sun takes to return to the same position in the sky – as viewed from the Earth or another celestial body of the Solar System – thus completing a full cycle of astronomical seasons. For example, it is the time from vernal equinox to the next vernal equinox, or from summer solstice to the next summer solstice. It is the type of year used by tropical solar calendars.

The tropical year is one type of astronomical year and particular orbital period. Another type is the sidereal year (or sidereal orbital period), which is the time it takes Earth to complete one full orbit around the Sun as measured with respect to the fixed stars, resulting in a duration of 20 minutes longer than the tropical year, because of the precession of the equinoxes.

↑ Return to Menu

Celestial body in the context of Trojan asteroid

In astronomy, a trojan is a small celestial body (mostly asteroids) that shares the orbit of a larger body, remaining in a stable orbit approximately 60Β° ahead of or behind the main body near one of its Lagrangian points L4 and L5. Trojans can share the orbits of planets or of large moons.

Trojans are one type of co-orbital object. In this arrangement, a star and a planet orbit about their common barycenter, which is close to the center of the star because it is usually much more massive than the orbiting planet. In turn, a much smaller mass than both the star and the planet, located at one of the Lagrangian points of the star–planet system, is subject to a combined gravitational force that acts through this barycenter. Hence the smallest object orbits around the barycenter with the same orbital period as the planet, and the arrangement can remain stable over time.

↑ Return to Menu

Celestial body in the context of Horizon

The horizon is the border between the surface of a celestial body and its sky when viewed from the perspective of an observer on or above the surface of the celestial body. This concept is further refined as -

There is also an imaginary astronomical, celestial, or theoretical horizon, part of the horizontal coordinate system, which is an infinite eye-level plane perpendicular to a line that runs (a) from the center of a celestial body (b) through the observer and (c) out to space (see graphic). It is used to calculate "horizon dip," which is the difference between the astronomical horizon and the sea horizon measured in arcs. Horizon dip is one factor taken into account in navigation by the stars.

↑ Return to Menu

Celestial body in the context of Clearing the neighbourhood

In celestial mechanics, "clearing the neighbourhood" (or dynamical dominance) around a celestial body's orbit describes the body becoming gravitationally dominant such that there are no other bodies of comparable size other than its natural satellites or those otherwise under its gravitational influence.

"Clearing the neighbourhood" is one of three necessary criteria for a celestial body to be considered a planet in the Solar System, according to the definition adopted in 2006 by the International Astronomical Union (IAU). In 2015, a proposal was made to extend the definition to exoplanets.

↑ Return to Menu

Celestial body in the context of Astronomical event

Astronomical events are celestial body events such as eclipses, novae or planetary collisions studied by the scientific discipline of astronomy, whereas "astronomy events" refers to social events such as academic meetings, conferences and other such newsworthy occasions relating to astronomy.

↑ Return to Menu