Cayley's theorem in the context of Permutation group


Cayley's theorem in the context of Permutation group

Cayley's theorem Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Cayley's theorem in the context of "Permutation group"


HINT:

👉 Cayley's theorem in the context of Permutation group

In mathematics, a permutation group is a group G whose elements are permutations of a given set M and whose group operation is the composition of permutations in G (which are thought of as bijective functions from the set M to itself). The group of all permutations of a set M is the symmetric group of M, often written as Sym(M). The term permutation group thus means a subgroup of the symmetric group. If M = {1, 2, ..., n} then Sym(M) is usually denoted by Sn, and may be called the symmetric group on n letters.

By Cayley's theorem, every group is isomorphic to some permutation group.

↓ Explore More Topics
In this Dossier

Cayley's theorem in the context of Cayley graph

In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem (named after Arthur Cayley), and uses a specified set of generators for the group. It is a central tool in combinatorial and geometric group theory. The structure and symmetry of Cayley graphs make them particularly good candidates for constructing expander graphs.

View the full Wikipedia page for Cayley graph
↑ Return to Menu

Cayley's theorem in the context of Linear group

In mathematics, a matrix group is a group G consisting of invertible matrices over a specified field K, with the operation of matrix multiplication. A linear group is a group that is isomorphic to a matrix group (that is, admitting a faithful, finite-dimensional representation over K).

Any finite group is linear, because it can be realized by permutation matrices using Cayley's theorem. Among infinite groups, linear groups form an interesting and tractable class. Examples of groups that are not linear include groups which are "too big" (for example, the group of permutations of an infinite set), or which exhibit some pathological behavior (for example, finitely generated infinite torsion groups).

View the full Wikipedia page for Linear group
↑ Return to Menu

Cayley's theorem in the context of Arthur Cayley

Arthur Cayley FRS (/ˈkeɪli/; 16 August 1821 – 26 January 1895) was an English mathematician who worked mostly on algebra. He helped found the modern British school of pure mathematics, and was a professor at Trinity College, Cambridge for 35 years.

He postulated what is now known as the Cayley–Hamilton theorem—that every square matrix is a root of its own characteristic polynomial, and verified it for matrices of order 2 and 3. He was the first to define the concept of an abstract group, a set with a binary operation satisfying certain laws, as opposed to Évariste Galois' concept of permutation groups. In group theory, Cayley tables, Cayley graphs, and Cayley's theorem are named in his honour, as well as Cayley's formula in combinatorics.

View the full Wikipedia page for Arthur Cayley
↑ Return to Menu