Carbide in the context of Tool steel


Carbide in the context of Tool steel

Carbide Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Carbide in the context of "Tool steel"


⭐ Core Definition: Carbide

In chemistry, a carbide usually describes a compound composed of carbon and a metal. In metallurgy, carbiding or carburizing is the process for producing carbide coatings on a metal piece.

↓ Menu
HINT:

In this Dossier

Carbide in the context of Refractory

In materials science, a refractory (or refractory material) is a material that is resistant to decomposition by heat or chemical attack and that retains its strength and rigidity at high temperatures. They are inorganic, non-metallic compounds that may be porous or non-porous, and their crystallinity varies widely: they may be crystalline, polycrystalline, amorphous, or composite. They are typically composed of oxides, carbides or nitrides of the following elements: silicon, aluminium, magnesium, calcium, boron, chromium and zirconium. Many refractories are ceramics, but some such as graphite are not, and some ceramics such as clay pottery are not considered refractory. Refractories are distinguished from the refractory metals, which are elemental metals and their alloys that have high melting temperatures.

Refractories are defined by ASTM C71 as "non-metallic materials having those chemical and physical properties that make them applicable for structures, or as components of systems, that are exposed to environments above 1,000 °F (811 K; 538 °C)". Refractory materials are used in furnaces, kilns, incinerators, and reactors. Refractories are also used to make crucibles and molds for casting glass and metals. The iron and steel industry and metal casting sectors use approximately 70% of all refractories produced.

View the full Wikipedia page for Refractory
↑ Return to Menu

Carbide in the context of Cementite

Cementite (or iron carbide) is a compound of iron and carbon, more precisely an intermediate transition metal carbide with the formula Fe3C. By weight, it is 6.67% carbon and 93.3% iron. It has an orthorhombic crystal structure. It is a hard, brittle material, normally classified as a ceramic in its pure form, and is a frequently found and important constituent in ferrous metallurgy. While cementite is present in most steels and cast irons, it is produced as a raw material in the iron carbide process, which belongs to the family of alternative ironmaking technologies. The name cementite originated from the theory of Floris Osmond and J. Werth, in which the structure of solidified steel consists of a kind of cellular tissue, with ferrite as the nucleus and Fe3C the envelope of the cells. The carbide therefore cemented the iron.

View the full Wikipedia page for Cementite
↑ Return to Menu

Carbide in the context of Native element minerals

Native element minerals are those elements that occur in nature in uncombined form with a distinct mineral structure. The elemental class includes metals, intermetallic compounds, alloys, metalloids, and nonmetals. The Nickel–Strunz classification system also includes the naturally occurring phosphides, silicides, nitrides, carbides, and arsenides.

View the full Wikipedia page for Native element minerals
↑ Return to Menu

Carbide in the context of Hafnium carbonitride

Hafnium carbonitride (HfCN) is an ultra-high temperature ceramic (UHTC) mixed anion compound composed of hafnium (Hf), carbon (C) and nitrogen (N).

View the full Wikipedia page for Hafnium carbonitride
↑ Return to Menu

Carbide in the context of Molybdenum

Molybdenum is a chemical element; it has symbol Mo and atomic number 42. The name is derived from Ancient Greek μόλυβδος mólybdos, meaning lead, since its ores were sometimes confused with those of lead. Molybdenum minerals have been known throughout history, but the element was discovered (in the sense of differentiating it as a new entity from the mineral salts of other metals) in 1778 by Carl Wilhelm Scheele. The metal was first isolated in 1781 by Peter Jacob Hjelm.

Molybdenum does not occur naturally as a free metal on Earth; in its minerals, it is found only in oxidized states. The free element, a silvery metal with a grey cast, has the sixth-highest melting point of any element. It readily forms hard, stable carbides in alloys, and for this reason most of the world production of the element (about 80%) is used in steel alloys, including high-strength alloys and superalloys.

View the full Wikipedia page for Molybdenum
↑ Return to Menu

Carbide in the context of Tungsten carbide

Tungsten carbide (chemical formula: WC) is a carbide containing equal parts of tungsten and carbon atoms. In its most basic form, tungsten carbide is a fine gray powder, but it can be pressed and formed into shapes through sintering for use in industrial machinery, engineering facilities, molding blocks, cutting tools, chisels, abrasives, armor-piercing bullets and jewelry.

View the full Wikipedia page for Tungsten carbide
↑ Return to Menu

Carbide in the context of Organometallic chemistry

Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkali, alkaline earth, and transition metals, and sometimes broadened to include metalloids like boron, silicon, and selenium, as well. Aside from bonds to organyl fragments or molecules, bonds to 'inorganic' carbon, like carbon monoxide (metal carbonyls), cyanide, or carbide, are generally considered to be organometallic as well. Some related compounds such as transition metal hydrides and metal phosphine complexes are often included in discussions of organometallic compounds, though strictly speaking, they are not necessarily organometallic. The related but distinct term "metalorganic compound" refers to metal-containing compounds lacking direct metal-carbon bonds but which contain organic ligands. Metal β-diketonates, alkoxides, dialkylamides, and metal phosphine complexes are representative members of this class. The field of organometallic chemistry combines aspects of traditional inorganic and organic chemistry.

Organometallic compounds are widely used both stoichiometrically in research and industrial chemical reactions, as well as in the role of catalysts to increase the rates of such reactions (e.g., as in uses of homogeneous catalysis), where target molecules include polymers, pharmaceuticals, and many other types of practical products.

View the full Wikipedia page for Organometallic chemistry
↑ Return to Menu

Carbide in the context of Wootz steel

Wootz steel is a crucible steel characterized by a pattern of bands and high carbon content. These bands are formed by sheets of microscopic carbides within a tempered martensite or pearlite matrix in higher-carbon steel, or by ferrite and pearlite banding in lower-carbon steels. It was a pioneering steel alloy developed in southern India in the mid-1st millennium BC and exported globally.

View the full Wikipedia page for Wootz steel
↑ Return to Menu

Carbide in the context of Burr (cutter)

Burrs or burs (sometimes called rotary files) are small cutting tools; not to be confused with small pieces of metal formed from cutting metal, used in die grinders, rotary tools, or dental drills. The name may be considered appropriate when their small-sized head (3 mm diameter shaft) is compared to a bur (fruit seed with hooks) or their teeth are compared to a metal burr.

View the full Wikipedia page for Burr (cutter)
↑ Return to Menu

Carbide in the context of Decarburization

Decarburization (or decarbonization) is the process of decreasing carbon content, which is the opposite of carburization.

The term is typically used in metallurgy, describing the decrease of the content of carbon in metals (usually steel). Decarburization occurs when the metal is heated to temperatures of 700 °C or above when carbon in the metal reacts with gases containing oxygen or hydrogen. The removal of carbon removes hard carbide phases resulting in a softening of the metal, primarily at the surfaces which are in contact with the decarburizing gas.

View the full Wikipedia page for Decarburization
↑ Return to Menu

Carbide in the context of Malleable iron

Malleable iron is cast as white iron, the structure being a metastable carbide in a pearlitic matrix. Through an annealing heat treatment, the brittle structure as first cast is transformed into the malleable form. Carbon agglomerates into small roughly spherical aggregates of graphite, leaving a matrix of ferrite or pearlite according to the exact heat treatment used.

Three basic types of malleable iron are recognized within the casting industry: blackheart, whiteheart, and pearlitic.

View the full Wikipedia page for Malleable iron
↑ Return to Menu

Carbide in the context of Silicide

A silicide is a type of chemical compound that combines silicon and a usually more electropositive element.

Silicon is more electropositive than carbon. In terms of their physical properties, silicides are structurally closer to borides than to carbides. Because of size differences however silicides are not isostructural with borides and carbides.

View the full Wikipedia page for Silicide
↑ Return to Menu

Carbide in the context of Ultra-high temperature ceramic

Ultra-high-temperature ceramics (UHTCs) are a type of refractory ceramics that can withstand extremely high temperatures without degrading, often above 2,000 °C. They also often have high thermal conductivities and are highly resistant to thermal shock, meaning they can withstand sudden and extreme changes in temperature without cracking or breaking. Chemically, they are usually borides, carbides, nitrides, and oxides of early transition metals.

UHTCs are used in various high-temperature applications, such as heat shields for spacecraft, furnace linings, hypersonic aircraft components and nuclear reactor components. They can be fabricated through various methods, including hot pressing, spark plasma sintering, and chemical vapor deposition. Despite their advantages, UHTCs also have some limitations, such as their brittleness and difficulty in machining. However, ongoing research is focused on improving the processing techniques and mechanical properties of UHTCs.

View the full Wikipedia page for Ultra-high temperature ceramic
↑ Return to Menu