Capillary action in the context of "Pore water pressure"

Play Trivia Questions online!

or

Skip to study material about Capillary action in the context of "Pore water pressure"

Ad spacer

⭐ Core Definition: Capillary action

Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of external forces like gravity.

The effect can be seen in the drawing up of liquids between the hairs of a paint brush, in a thin tube such as a straw, in porous materials such as paper and plaster, in some non-porous materials such as clay and liquefied carbon fiber, or in biological cells.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Capillary action in the context of Dip pen

A dip pen is a writing instrument used to apply ink to paper. It usually consists of a metal nib with a central slit that acts as a capillary channel like those of fountain pen nibs, mounted in a handle or holder, often made of wood. Other materials can be used for the holder, including bone, metal and plastic; some pens are made entirely of glass.

Generally dip pens have no ink reservoir, so the user must refill the ink from an ink bowl or bottle to continue drawing or writing. Sometimes a simple tubular reservoir can be clipped to the top of the pen, allowing for several minutes of uninterrupted use. Refilling can be done by dipping into an inkwell, but it is also possible to charge the pen with an eyedropper, a syringe, or a brush, which gives more control over the amount of ink applied. Thus, "dip pens" are not necessarily dipped; many illustrators call them nib pens.

↑ Return to Menu

Capillary action in the context of Fountain pen

A fountain pen is a writing instrument that uses a metal nib to apply water-based ink to paper. It is distinguished from earlier dip pens by using an internal reservoir to hold ink, eliminating the need to repeatedly dip the pen in an inkwell during use. The pen draws ink from the reservoir through a feed to the nib and deposits the ink on paper via a combination of gravity and capillary action. Filling the reservoir with ink may be achieved manually, via the use of an eyedropper or syringe, or via an internal filling mechanism that creates suction (for example, through a piston mechanism) or a vacuum to transfer ink directly through the nib into the reservoir. Some pens employ removable reservoirs in the form of pre-filled ink cartridges.

↑ Return to Menu

Capillary action in the context of Brazing

Brazing is a metal-joining process in which two or more metal items are joined by melting and flowing a filler metal into the joint, with the filler metal having a lower melting point than the adjoining metal.

During the brazing process, the filler metal flows into the gap between close-fitting parts by capillary action. The filler metal is brought slightly above its melting (liquidus) temperature while protected by a suitable atmosphere, usually a flux. It then flows over the base metal (in a process known as wetting) and is then cooled to join the work pieces together.

↑ Return to Menu

Capillary action in the context of Vadose zone

The vadose zone (from the Latin word for "shallow"), also termed the unsaturated zone, is the part of Earth between the land surface and the top of the phreatic zone, the position at which the groundwater (the water in the soil's pores) is at atmospheric pressure. Hence, the vadose zone extends from the top of the ground surface to the water table.

Water in the vadose zone has a pressure head less than atmospheric pressure, and is retained by a combination of adhesion (funiculary groundwater), and capillary action (capillary groundwater). If the vadose zone envelops soil, the water contained therein is termed soil moisture. In fine grained soils, capillary action can cause the pores of the soil to be fully saturated above the water table at a pressure less than atmospheric. The vadose zone does not include the area that is still saturated above the water table, often referred to as the capillary fringe.

↑ Return to Menu

Capillary action in the context of Water table

The water table is the upper surface of the phreatic zone or zone of saturation. The zone of saturation is where the pores and fractures of the ground are saturated with groundwater, which may be fresh, saline, or brackish, depending on the locality. It can also be simply explained as the depth below which the ground is saturated. The portion above the water table is the vadose zone. It may be visualized as the "surface" of the subsurface materials that are saturated with groundwater in a given vicinity.

In coarse soils, the water table settles at the surface where the water pressure head is equal to the atmospheric pressure (where gauge pressure = 0). In soils where capillary action is strong, the water table is pulled upward, forming a capillary fringe.

↑ Return to Menu

Capillary action in the context of Unconventional (oil & gas) reservoir

Unconventional (oil and gas) reservoirs, or unconventional resources (resource plays) are accumulations where oil and gas phases are tightly bound to the rock fabric by strong capillary forces, requiring specialized measures for evaluation and extraction.

↑ Return to Menu

Capillary action in the context of Aerogel

Aerogels are a class of synthetic porous ultralight material derived from a gel, in which the liquid component for the gel has been replaced with a gas, without significant collapse of the gel structure. The result is a solid with extremely low density and extremely low thermal conductivity. Aerogels can be made from a variety of chemical compounds. Silica aerogels feel like fragile styrofoam to the touch, while some polymer-based aerogels feel like rigid foams.

Aerogels are produced by extracting the liquid component of a gel through supercritical drying or freeze-drying. This allows the liquid to be slowly dried off without causing the solid matrix in the gel to collapse from capillary action, as would happen with conventional evaporation. The first aerogels were produced from silica gels. Kistler's later work involved aerogels based on alumina, chromia, and tin dioxide. Carbon aerogels were first developed in the late 1980s.

↑ Return to Menu

Capillary action in the context of Moisture management

Moisture management or moisture-wicking is a functional property in textiles that enables them to transfer moisture from the skin, by capillary action through the fabric, spreading it over a large external surface area, which helps in drying quickly. The property is one of the most important for thermal comfort of textiles.

↑ Return to Menu

Capillary action in the context of Teapot dribble

The teapot effect, also known as dribbling, is a fluid dynamics phenomenon that occurs when a liquid being poured from a container runs down the spout or the body of the vessel instead of flowing out in an arc.

Markus Reiner coined the term "teapot effect" in 1956 to describe the tendency of liquid to dribble down the side of a vessel while pouring. Reiner received his PhD at TU Wien in 1913 and made significant contributions to the development of the study of flow behavior known as rheology. Reiner believed the teapot effect could be explained by Bernoulli's principle, which states that an increase in the speed of a fluid is always accompanied by a decrease in its pressure. When tea is poured from a teapot, the liquid's speed increases as it flows through the narrowing spout. This decrease in pressure was what Reiner thought to cause the liquid to dribble down the side of the pot.However, a 2021 study found the primary cause of the phenomenon to be an interaction of inertia and capillary forces. The study found that the smaller the angle between the container wall and the liquid surface, the more the teapot effect is slowed down.

↑ Return to Menu