Butane in the context of Gas explosion


Butane in the context of Gas explosion

Butane Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Butane in the context of "Gas explosion"


⭐ Core Definition: Butane

Butane (/ˈbjuːtn/) is an alkane with the formula C4H10. Butane exists as two isomers, n-butane with connectivity CH3CH2CH2CH3 and iso-butane with the formula (CH3)3CH. Both isomers are highly flammable, colorless, easily liquefied gases that quickly vaporize at room temperature and pressure. Butanes are a trace components of natural gases (NG). The other hydrocarbons in NG include propane, ethane, and especially methane, which are more abundant. Liquefied petroleum gas is a mixture of propane and some butanes.

↓ Menu
HINT:

👉 Butane in the context of Gas explosion

A gas explosion is the ignition of a mixture of air and flammable gas, typically from a gas leak. In household accidents, the principal explosive gases are those used for heating or cooking purposes such as natural gas, methane, propane, butane. In industrial explosions, many other gases, like hydrogen, as well as evaporated (gaseous) gasoline or ethanol play an important role. Industrial gas explosions can be prevented with the use of intrinsic safety barriers to prevent ignition, or use of alternative energy.

↓ Explore More Topics
In this Dossier

Butane in the context of Liquified petroleum gas

Liquefied petroleum gas, also referred to as liquid petroleum gas (LPG or LP gas), is a fuel gas which contains a flammable mixture of hydrocarbon gases, specifically propane, n-butane and isobutane. It can also contain some propylene, butylene, and isobutylene/isobutene.

LPG is used as a fuel gas in heating appliances, cooking equipment, and vehicles, and is used as an aerosol propellant and a refrigerant, replacing chlorofluorocarbons in an effort to reduce the damage it causes to the ozone layer. When specifically used as a vehicle fuel, it is often referred to as autogas or just as gas.

View the full Wikipedia page for Liquified petroleum gas
↑ Return to Menu

Butane in the context of Autogas

Autogas is liquefied petroleum gas (LPG) used as a fuel in internal combustion engines of vehicles as well as in stationary applications such as generators. It is a mixture of propane and butane.

Autogas is widely used as a "green" fuel, as its use reduces CO2 exhaust emissions by around 15% compared to petrol. One litre of petrol produces 2.3 kg of CO2 when burnt, whereas the equivalent amount of autogas (1.33 litres due to the lower density of autogas) produces 2 kg of CO2 when burnt. CO emissions are 30% lower compared to petrol, and NOx is reduced by 50%. It has an octane rating (MON/RON) that is between 90 and 110 and an energy content (higher heating value—HHV) that is between 25.5 megajoules per litre (for pure propane) and 28.7 megajoules per litre (for pure butane) depending upon the actual fuel composition.

View the full Wikipedia page for Autogas
↑ Return to Menu

Butane in the context of Fuel tank

A fuel tank (also called a petrol tank or gas tank) is a safe container for flammable fluids, often gasoline or diesel fuel. Though any storage tank for fuel may be so called, the term is typically applied to part of an engine system in which the fuel is stored and propelled (fuel pump) or released (pressurized gas) into an engine. Fuel tanks range in size and complexity from the small plastic tank of a butane lighter to the multi-chambered cryogenic Space Shuttle external tank.

View the full Wikipedia page for Fuel tank
↑ Return to Menu

Butane in the context of Propane

Propane (/ˈprpn/) is a three-carbon chain alkane with the molecular formula C3H8. It is a gas at standard temperature and pressure, but becomes liquid when compressed for transportation and storage. A by-product of natural gas processing and petroleum refining, it is often a constituent of liquefied petroleum gas (LPG), which is commonly used as a fuel in domestic and industrial applications and in low-emissions public transportation; other constituents of LPG may include propylene, butane, butylene, butadiene, and isobutylene. Discovered in 1857 by the French chemist Marcellin Berthelot, it became commercially available in the US by 1911. Propane has lower volumetric energy density than gasoline or coal, but has higher gravimetric energy density than them and burns more cleanly.

Propane gas has become a popular choice for barbecues and portable stoves because its low −42 °C boiling point makes it vaporise inside pressurised liquid containers (it exists in two phases, vapor above liquid). It retains its ability to vaporise even in cold weather, making it better-suited for outdoor use in cold climates than alternatives with higher boiling points like butane. LPG powers buses, forklifts, automobiles, outboard boat motors, and ice resurfacing machines, and is used for heat and cooking in recreational vehicles and campers. Propane is also becoming popular as a replacement refrigerant (R290) for heatpumps as it offers greater efficiency than the current refrigerants: R410A / R32, higher temperature heat output and less damage to the atmosphere for escaped gases—at the expense of high gas flammability.

View the full Wikipedia page for Propane
↑ Return to Menu

Butane in the context of Aliphatic

In organic chemistry, hydrocarbons (compounds composed solely of carbon and hydrogen) are divided into two classes: aromatic compounds and aliphatic compounds (/ˌælɪˈfætɪk/; G. aleiphar, fat, oil). Aliphatic compounds can be saturated (in which all the C-C bonds are single, requiring the structure to be completed, or 'saturated', by hydrogen) like hexane, or unsaturated, like hexene and hexyne. Open-chain compounds, whether straight or branched, and which contain no rings of any type, are always aliphatic. Cyclic compounds can be aliphatic if they are not aromatic.

View the full Wikipedia page for Aliphatic
↑ Return to Menu

Butane in the context of Conformational isomerism

In chemistry, rotamers are chemical species that differ from one another primarily due to rotations about one single bond. Various arrangements of atoms in a molecule that differ by rotation about single bonds can also be referred to as conformations. Conformations, which represent local minima on the potential energy surface, are called conformers. Conformers can differ from one another due to rotation of multiple bonds; rotamers are a subset of conformers. Conformers/rotamers usually differ little in their energies, so they are almost never separable in a practical sense. Rotations about single bonds are subject to small energy barriers. When the time scale for interconversion is long enough for isolation of individual rotamers (usually arbitrarily defined as a half-life of interconversion of 1000 seconds or longer), the species are termed atropisomers. The ring-flip of substituted cyclohexanes constitutes a common form of conformers.

The study of the energetics of bond rotation is referred to as conformational analysis. In some cases, conformational analysis can be used to predict and explain product selectivity, mechanisms, and rates of reactions. Conformational analysis also plays an important role in rational, structure-based drug design.

View the full Wikipedia page for Conformational isomerism
↑ Return to Menu

Butane in the context of Open-chain compound

In chemistry, an open-chain compound (or open chain compound) or acyclic compound (Greek prefix α 'without' and κύκλος 'cycle') is a compound with a linear structure, rather than a cyclic one.An open-chain compound having no side groups is called a straight-chain compound (also spelled as straight chain compound). Many of the simple molecules of organic chemistry, such as the alkanes and alkenes, have both linear and ring isomers, that is, both acyclic and cyclic. For those with 4 or more carbons, the linear forms can have straight-chain or branched-chain isomers. The lowercase prefix n- denotes the straight-chain isomer; for example, n-butane is straight-chain butane, whereas i-butane is isobutane. Cycloalkanes are isomers of alkenes, not of alkanes, because the ring's closure involves a C-C bond. Having no rings (aromatic or otherwise), all open-chain compounds are aliphatic.

Typically in biochemistry, some isomers are more prevalent than others. For example, in living organisms, the open-chain isomer of glucose usually exists only transiently, in small amounts; D-glucose is the usual isomer; and L-glucose is rare.

View the full Wikipedia page for Open-chain compound
↑ Return to Menu

Butane in the context of Isobutane

Isobutane, also known as i-butane, 2-methylpropane or methylpropane, is a chemical compound with molecular formula HC(CH3)3. It is an isomer of butane. Isobutane is a colorless, odorless gas.It is the simplest alkane with a tertiary carbon atom. Isobutane is used as a precursor molecule in the petrochemical industry, for example in the synthesis of isooctane.

View the full Wikipedia page for Isobutane
↑ Return to Menu

Butane in the context of Butyl

In organic chemistry, butyl is a four-carbon alkyl radical or substituent group with general chemical formula −C4H9, derived from either of the two isomers (n-butane and isobutane) of butane.

The isomer n-butane can connect in two ways, giving rise to two "-butyl" groups:

View the full Wikipedia page for Butyl
↑ Return to Menu

Butane in the context of Nail gun

A nail gun, nailgun or nailer is a form of hammer used to drive nails into wood or other materials. It is usually driven by compressed air (pneumatic), electromagnetism, highly flammable gases such as butane or propane, or, for powder-actuated tools, a small explosive charge. Nail guns have in many ways replaced hammers as tools of choice among builders.

The nail gun was designed by Morris Pynoos, a civil engineer by training, for his work on Howard Hughes' Hughes H-4 Hercules (known as the Spruce Goose). The wooden fuselage was nailed together and glued, and then the nails were removed.

View the full Wikipedia page for Nail gun
↑ Return to Menu

Butane in the context of Bunsen burner

A Bunsen burner, named after Robert Bunsen, is a kind of ambient air gas burner used as laboratory equipment; it produces a single open gas flame, and is used for heating, sterilization, and combustion.

The gas can be natural gas, which is mainly methane, or a liquefied petroleum gas, such as propane, butane, a mixture or, as Bunsen himself used, coal gas. Combustion temperature achieved depends in part on the adiabatic flame temperature of the chosen fuel mixture.

View the full Wikipedia page for Bunsen burner
↑ Return to Menu

Butane in the context of Coal Oil Point seep field

The Coal Oil Point seep field (COP) in the Santa Barbara Channel offshore from Goleta, California, is a marine petroleum seep area of about three square kilometres, within the Offshore South Ellwood Oil Field and stretching from the coastline southward more than three kilometers (1.9 mi). Major seeps are located in water depths from 20 to 80 meters (66 to 262 ft). The seep field is among the largest and best studied areas of active marine seepage in the world. These perennial and continuous oil and gas seeps have been active on the northern edge of the Santa Barbara Channel for at least 500,000 years. The combined seeps in the field release about 40 tons of methane per day and about 19 tons of reactive organic gas (ethane, propane, butane and higher hydrocarbons); about twice the hydrocarbon air pollution released by all the cars and trucks in Santa Barbara County in 1990. The liquid petroleum produces a slick that is many kilometres long and when degraded by evaporation and weathering, produces tar balls which wash up on the beaches for miles around.

This seep also releases on the order of 100 to 150 barrels (16 to 24 m) of liquid petroleum per day. The field produces about 9 cubic meters of natural gas per barrel of petroleum.

View the full Wikipedia page for Coal Oil Point seep field
↑ Return to Menu

Butane in the context of Gas lamps

Gas lighting is the production of artificial light from combustion of a fuel gas such as natural gas, methane, propane, butane, acetylene, ethylene, hydrogen, carbon monoxide, or coal gas (sometimes called town gas). The light is produced either directly by the flame, generally by using special mixes (typically propane or butane) of illuminating gas to increase brightness, or indirectly with other components such as the gas mantle or the limelight, with the gas primarily functioning to heat the mantle or the lime to incandescence.

Before electricity became sufficiently widespread and economical to allow for general public use, gas lighting was prevalent for outdoor and indoor use in cities and suburbs where the infrastructure for distribution of gas was practical. At that time, the most common fuels for gas lighting were wood gas, coal gas and, in limited cases, water gas. Early gas lights were ignited manually by lamplighters, although many later designs are self-igniting.

View the full Wikipedia page for Gas lamps
↑ Return to Menu

Butane in the context of Lampworking

Lampworking is a type of glasswork in which a torch or lamp is used to melt the glass. Once in a molten state, the glass is formed by blowing and shaping with tools and hand movements. It is also known as flameworking or torchworking, as the modern practice no longer uses oil-fueled lamps. Although lack of a precise definition for lampworking makes it difficult to determine when this technique was first developed, the earliest verifiable lampworked glass is probably a collection of beads thought to date to the fifth century BCE. Lampworking became widely practiced in Murano, Italy in the 14th century. As early as the 17th century, itinerant glassworkers demonstrated lampworking to the public. In the mid-19th century lampwork technique was extended to the production of paperweights, primarily in France, where it became a popular art form, still collected today. Lampworking differs from glassblowing in that glassblowing uses a furnace as the primary heat source, although torches are also used.

Early lampworking was done in the flame of an oil lamp, with the artist blowing air into the flame through a pipe or using foot-powered bellows. Most artists today use torches that burn either propane or natural gas, or in some countries butane, for the fuel gas, mixed with either air or pure oxygen as the oxidizer. Many hobbyists use MAPP gas in portable canisters for fuel and some use oxygen concentrators as a source of continuous oxygen.

View the full Wikipedia page for Lampworking
↑ Return to Menu