Biosynthesis in the context of "Isoleucine"

Play Trivia Questions online!

or

Skip to study material about Biosynthesis in the context of "Isoleucine"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Biosynthesis in the context of Metabolic regulation

Metabolism (/məˈtæbəlɪzəm/, from Greek: μεταβολή metabolē, "change") refers to the set of life-sustaining chemical reactions that occur within living organisms. The three main functions of metabolism are the conversion of energy in food into a usable form for cellular processes; the conversion of food to building blocks of macromolecules (biopolymers) such as proteins, lipids, nucleic acids, and some carbohydrates; and the excretion of metabolic wastes. These enzyme-catalyzed reactions allow organisms to grow, reproduce, maintain their structures, and respond to their environments. The word metabolism can also refer to all chemical reactions that occur in living organisms, including digestion and the transportation of substances into and between different cells. In a broader sense, the set of reactions occurring within the cells is called intermediary (or intermediate) metabolism.

Metabolic reactions may be categorized as catabolic—the breaking down of compounds (for example, of glucose to pyruvate by cellular respiration); or anabolic—the building up (biosynthesis) of compounds (such as proteins, carbohydrates, lipids, and nucleic acids). Usually, catabolism releases energy, and anabolism consumes energy.

↑ Return to Menu

Biosynthesis in the context of Semisynthesis

Semisynthesis, or partial chemical synthesis, is a type of chemical synthesis that uses chemical compounds isolated from natural sources (such as microbial cell cultures or plant material) as the starting materials to produce novel compounds with distinct chemical and medicinal properties. The novel compounds generally have a high molecular weight or a complex molecular structure, more so than those produced by total synthesis from simple starting materials. Semisynthesis is a means of preparing many medicines more cheaply than by total synthesis since fewer chemical steps are necessary.

Drugs derived from natural sources are commonly produced either by isolation from their natural source or, as described here, through semisynthesis of an isolated agent. From the perspective of chemical synthesis, living organisms act as highly efficient chemical factories, capable of producing structurally complex compounds through biosynthesis. In contrast, engineered chemical synthesis, although powerful, tends to be simpler and less chemically diverse than the complex biosynthetic pathways essential to life.

↑ Return to Menu

Biosynthesis in the context of Cell growth

Cell growth refers to an increase in the total mass of a cell, including both cytoplasmic, nuclear and organelle volume. Cell growth occurs when the overall rate of cellular biosynthesis (production of biomolecules or anabolism) is greater than the overall rate of cellular degradation (the destruction of biomolecules via the proteasome, lysosome or autophagy, or catabolism).

Cell growth is not to be confused with cell division or the cell cycle, which are distinct processes that can occur alongside cell growth during the process of cell proliferation, where a cell, known as the mother cell, grows and divides to produce two daughter cells. Importantly, cell growth and cell division can also occur independently of one another. During early embryonic development (cleavage of the zygote to form a morula and blastoderm), cell divisions occur repeatedly without cell growth. Conversely, some cells can grow without cell division or without any progression of the cell cycle, such as growth of neurons during axonal pathfinding in nervous system development.

↑ Return to Menu

Biosynthesis in the context of Amino acid

Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 appear in the genetic code of life.

Amino acids can be classified according to the locations of the core structural functional groups (alpha- (α-), beta- (β-), gamma- (γ-) amino acids, etc.); other categories relate to polarity, ionization, and side-chain group type (aliphatic, acyclic, aromatic, polar, etc.). In the form of proteins, amino-acid residues form the second-largest component (water being the largest) of human muscles and other tissues. Beyond their role as residues in proteins, amino acids participate in a number of processes such as neurotransmitter transport and biosynthesis. It is thought that they played a key role in enabling life on Earth and its emergence.

↑ Return to Menu

Biosynthesis in the context of Vitamin

Vitamins are organic molecules (or a set of closely related molecules called vitamers) that are essential to an organism in small quantities for proper metabolic function. These essential nutrients cannot be synthesized in the organism in sufficient quantities for survival, and therefore must be obtained through the diet. For example, vitamin C can be synthesized by some species but not by others; it is not considered a vitamin in the first instance but is in the second. Most vitamins are not single molecules, but groups of related molecules called vitamers. For example, there are eight vitamers of vitamin E: four tocopherols and four tocotrienols.

The term vitamin does not include the three other groups of essential nutrients: minerals, essential fatty acids, and essential amino acids.

↑ Return to Menu

Biosynthesis in the context of Golden rice

Golden rice is a variety of rice (Oryza sativa) produced through genetic engineering to biosynthesize beta-carotene, a precursor of vitamin A, in the edible parts of the rice. It is intended to produce a fortified food to be grown and consumed in areas with a shortage of dietary vitamin A. Genetically modified golden rice can produce up to 23 times as much beta-carotene as the original golden rice.

Golden rice is generally considered to be safe, with the FDA, Health Canada, International Rice Research Institute and the Bill & Melinda Gates Foundation supporting its use. It has been met with significant opposition from some environmental and anti-globalisation activists, alleging risks regarding biodiversity and expressing concerns about unforeseen health effects and socioeconomic impacts. In 2016, 107 Nobel laureates wrote an open letter to Greenpeace and its supporters, asking them to abandon their campaign against genetically modified crops in general and golden rice in particular. In 2024, the Filipino Court of Appeals issued a cease and desist order for the growth of golden rice in the country, citing a lack of scientific certainty regarding its health and environmental impact.

↑ Return to Menu

Biosynthesis in the context of Acetate

An acetate is a salt formed by the combination of acetic acid with a base (e.g. alkaline, earthy, metallic, nonmetallic, or radical base). "Acetate" also describes the conjugate base or ion (specifically, the negatively charged ion called an anion) typically found in aqueous solution and written with the chemical formula C
2
H
3
O
2
. The neutral molecules formed by the combination of the acetate ion and a positive ion (called a cation) are also commonly called "acetates" (hence, acetate of lead, acetate of aluminium, etc.). The simplest of these is hydrogen acetate (called acetic acid) with corresponding salts, esters, and the polyatomic anion CH
3
CO
2
, or CH
3
COO
.

Most of the approximately 5 million tonnes of acetic acid produced annually in industry are used in the production of acetates, which usually take the form of polymers. In nature, acetate is the most common building block for biosynthesis.

↑ Return to Menu

Biosynthesis in the context of Lysine

Lysine (symbol Lys or K) is an α-amino acid that is a precursor to many proteins. Lysine contains an α-amino group (which is in the protonated −NH+3 form when the lysine is dissolved in water at physiological pH), an α-carboxylic acid group (which is in the deprotonated −COO form when the lysine is dissolved in water at physiological pH), and a side chain (CH2)4NH2 (which is partially protonated when the lysine is dissolved in water at physiological pH), and so it is classified as a basic, charged (in water at physiological pH), aliphatic amino acid. It is encoded by the codons AAA and AAG. Like almost all other amino acids, the α-carbon is chiral and lysine may refer to either enantiomer or a racemic mixture of both. For the purpose of this article, lysine will refer to the biologically active enantiomer L-lysine, where the α-carbon is in the S configuration.

↑ Return to Menu