Biological pigment in the context of "Structural color"

Play Trivia Questions online!

or

Skip to study material about Biological pigment in the context of "Structural color"

Ad spacer

⭐ Core Definition: Biological pigment

A biological pigment, also known simply as a pigment or biochrome, is a substance produced by living organisms that have a color resulting from selective color absorption. Biological pigments include plant pigments and flower pigments. Many biological structures, such as skin, eyes, feathers, fur and hair contain pigments such as melanin in specialized cells called chromatophores. In some species, pigments accrue over very long periods during an individual's lifespan.

Pigment color differs from structural color in that it is the same for all viewing angles, whereas structural color is the result of selective reflection or iridescence, usually because of multilayer structures. For example, butterfly wings typically contain structural color, although many butterflies have cells that contain pigment as well.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Biological pigment in the context of Structural color

Structural coloration in animals, and a few plants, is the production of colour by microscopically structured surfaces fine enough to interfere with visible light instead of pigments, although some structural coloration occurs in combination with pigments. For example, peacock tail feathers are pigmented brown, but their microscopic structure makes them also reflect blue, turquoise, and green light, and they are often iridescent.

Structural coloration was first described by English scientists Robert Hooke and Isaac Newton, and its principle—wave interference—explained by Thomas Young a century later. Young described iridescence as the result of interference between reflections from two or more surfaces of thin films, combined with refraction as light enters and leaves such films. The geometry then determines that at certain angles, the light reflected from both surfaces interferes constructively, while at other angles, the light interferes destructively. Different colours therefore appear at different angles.

↓ Explore More Topics
In this Dossier

Biological pigment in the context of Pigment

A pigment is a chemical compound that gives a substance or organism color, or is used by humans to add or alter color or change visual appearance. Pigments are completely or nearly insoluble and chemically unreactive in water or another medium; in contrast, dyes are colored substances which are soluble or go into solution at some stage in their use. Dyes are often organic compounds whereas pigments are often inorganic. Pigments of prehistoric and historic value include ochre, charcoal, and lapis lazuli. Biological pigments are compounds produced by living organisms that provide coloration.

↑ Return to Menu

Biological pigment in the context of Variegation

Variegation is the appearance of differently coloured zones in the foliage, flowers, and sometimes the stems and fruit of plants, granting a speckled, striped, or patchy appearance. The colors of the patches themselves vary from a slightly lighter shade of the natural coloration to yellow, to white, or other colors entirely such as red and pink. This is caused by varying levels and types of pigment, such as chlorophyll in leaves. Variegation can be caused by genetic mutations affecting pigment production, or by viral infections such as those resulting from mosaic viruses. Many plants are also naturally variegated, such as Goeppertia insignis. Most of these are herbaceous or climbing plants, and are most often species native to tropical rainforests.

Many species which are normally non-variegated are known to display variegation. Their appearance is desirable to enthusiasts, and many such plants are propagated and sold as unique cultivars. However, in individuals where the variegation occurs in normally-photosynthetic cells, the lack of functioning chloroplasts can slow growth rate. Conversely, naturally-variegated plants derive benefits from their appearance, such as improved photosynthetic efficiency in low-light conditions and herbivore deterrence.

↑ Return to Menu

Biological pigment in the context of Mycena leaiana

Mycena leaiana, commonly known as the orange mycena or Lea's mycena, is a species of saprobic fungi in the genus Mycena, family Mycenaceae. They have bright orange caps and stalks and reddish-orange gill edges. Typically found in North America, a variety, M. leaiana var. australis, can be found in Australasia.

The mushrooms usually grow in dense clusters on deciduous logs. The pigment responsible for the orange color in this species has antibiotic properties.

↑ Return to Menu

Biological pigment in the context of Melanin

Melanin (/ˈmɛlənɪn/ ; from Ancient Greek μέλας (mélas) 'black, dark') is a family of biomolecules organized as oligomers or polymers, which among other functions provide the pigments of many organisms. Melanin pigments are produced in a specialized group of cells known as melanocytes.

There are five basic types of melanin: eumelanin, pheomelanin, neuromelanin, allomelanin and pyomelanin. Melanin is produced through a multistage chemical process known as melanogenesis, where the oxidation of the amino acid tyrosine is followed by polymerization. Pheomelanin is a cysteinated form containing polybenzothiazine portions that are largely responsible for the red or yellow tint given to some skin or hair colors. Neuromelanin is found in the brain. Research has been undertaken to investigate its efficacy in treating neurodegenerative disorders such as Parkinson's. Allomelanin and pyomelanin are two types of nitrogen-free melanin.

↑ Return to Menu

Biological pigment in the context of Chromatophore

Chromatophores are cells that produce color, of which many types are pigment-containing cells, or groups of cells, found in a wide range of animals including amphibians, fish, reptiles, crustaceans and cephalopods. Mammals and birds, in contrast, have a class of cells called melanocytes for coloration.

Chromatophores are largely responsible for generating skin and eye colour in ectothermic animals and are generated in the neural crest during embryonic development. Mature chromatophores are grouped into subclasses based on their colour under white light: xanthophores (yellow), erythrophores (red), iridophores (reflective / iridescent), leucophores (white), melanophores (black/brown), and cyanophores (blue). While most chromatophores contain pigments that absorb specific wavelengths of light, the color of leucophores and iridophores is produced by their respective scattering and optical interference properties.

↑ Return to Menu

Biological pigment in the context of Photopic vision

Photopic vision is the vision of the eye under well-lit conditions (luminance levels from 10 to 10 cd/m). In humans and many other animals, photopic vision allows color perception, mediated by cone cells, and a significantly higher visual acuity and temporal resolution than available with scotopic vision.

The human eye uses three types of cones to sense light in three bands of color. The biological pigments of the cones have maximum absorption values at wavelengths of about 420 nm (blue), 534 nm (bluish-green), and 564 nm (yellowish-green). The color of the pure signal of the cones could be described as violet, blue-green, and scarlet red, respectively, but, in their wavelengths of maximum absorption other cones are activated as well. The sensitivity ranges of the cone cells overlap to provide vision throughout the visible spectrum. The maximum efficacy is 683 lm/W at a wavelength of 555 nm (green). By definition, light at a frequency of 5.4×10 hertz (λ = 555.17. . . nm) has a luminous efficacy of 683 lm/W.

↑ Return to Menu