Biological in the context of DNA


Biological in the context of DNA

Biological Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Biological in the context of "DNA"


⭐ Core Definition: Biological

Biology is the scientific study of life and living organisms. It is a broad natural science that encompasses a wide range of fields and unifying principles that explain the structure, function, growth, origin, evolution, and distribution of life. Central to biology are five fundamental themes: the cell as the basic unit of life, genes and heredity as the basis of inheritance, evolution as the driver of biological diversity, energy transformation for sustaining life processes, and the maintenance of internal stability (homeostasis).

Biology examines life across multiple levels of organization, from molecules and cells to organisms, populations, and ecosystems. Subdisciplines include molecular biology, physiology, ecology, evolutionary biology, developmental biology, and systematics, among others. Each of these fields applies a range of methods to investigate biological phenomena, including observation, experimentation, and mathematical modeling. Modern biology is grounded in the theory of evolution by natural selection, first articulated by Charles Darwin, and in the molecular understanding of genes encoded in DNA. The discovery of the structure of DNA and advances in molecular genetics have transformed many areas of biology, leading to applications in medicine, agriculture, biotechnology, and environmental science.

↓ Menu
HINT:

In this Dossier

Biological in the context of Material

A material is a substance or mixture of substances that constitutes an object. Materials can be pure or impure, living or non-living matter. Materials can be classified on the basis of their physical and chemical properties, or on their geological origin or biological function. Materials science is the study of materials, their properties, and their applications.

Raw materials can be processed in different ways to influence their properties, by purification, shaping or the introduction of other materials. New materials can be produced from raw materials by synthesis.

View the full Wikipedia page for Material
↑ Return to Menu

Biological in the context of Salinity

Salinity (/səˈlɪnɪti/) is the saltiness or amount of salt dissolved in a body of water, called saline water (see also soil salinity). It is usually measured in g/L or g/kg (grams of salt per liter/kilogram of water; the latter is dimensionless and equal to ).

Salinity is an important factor in determining many aspects of the chemistry of natural waters and of biological processes within it, and is a thermodynamic state variable that, along with temperature and pressure, governs physical characteristics like the density and heat capacity of the water. These in turn are important for understanding ocean currents and heat exchange with the atmosphere.

View the full Wikipedia page for Salinity
↑ Return to Menu

Biological in the context of Beach

A beach is a landform alongside a body of water which consists of loose particles. The particles composing a beach are typically made from rock, such as sand, gravel, shingle, pebbles, etc., or biological sources, such as mollusc shells or coralline algae. Sediments settle in different densities and structures, depending on the local wave action and weather, creating different textures, colors and gradients or layers of material.

Though some beaches form on inland freshwater locations such as lakes and rivers, most beaches are in coastal areas where wave or current action deposits and reworks sediments. Erosion and changing of beach geologies happens through natural processes, like wave action and extreme weather events. Where wind conditions are correct, beaches can be backed by coastal dunes which offer protection and regeneration for the beach. However, these natural forces have become more extreme due to climate change, permanently altering beaches at very rapid rates. Some estimates describe as much as 50 percent of the earth's sandy beaches disappearing by 2100 due to climate-change driven sea level rise.

View the full Wikipedia page for Beach
↑ Return to Menu

Biological in the context of Branches of science

The branches of science, also referred to as sciences, scientific fields or scientific disciplines, are commonly divided into three major groups:

Scientific knowledge must be grounded in observable phenomena and must be capable of being verified by other researchers working under the same conditions.

View the full Wikipedia page for Branches of science
↑ Return to Menu

Biological in the context of Adult

An adult is an animal that has reached full growth. The biological definition of adult is an organism that has reached sexual maturity and thus capable of reproduction.

In the human context, the term adult has meanings associated with legal and social concepts. In contrast to a non-adult or "minor", a legal adult is a person who has attained the age of majority and is therefore regarded as independent, self-sufficient, and responsible. They may also be regarded as "majors". The typical age of attaining adulthood for humans is 18 years, although definition may vary by country. A person may be physically mature and a biological adult by age 16 or so, but not defined as an adult by law until older ages. For example, in the US, you cannot join the armed forces or vote until age 18, and you cannot take on many legal and financial responsibilities until age 21.

View the full Wikipedia page for Adult
↑ Return to Menu

Biological in the context of Science fiction

Science fiction (often shortened to sci-fi or abbreviated SF) is the genre of speculative fiction that imagines advanced and futuristic scientific or technological progress. The elements of science fiction have evolved over time: from space exploration, extraterrestrial life, time travel, and robotics; to parallel universes, dystopian societies, and biological manipulations; and, most lately, to information technology, transhumanism (and posthumanism), and environmental challenges. Science fiction often specifically explores human responses to the consequences of these types of projected or imagined scientific advances.

The precise definition of science fiction has long been disputed among authors, critics, scholars, and readers. It contains many subgenres, including hard science fiction, which emphasizes scientific accuracy, and soft science fiction, which focuses on social sciences. Other notable subgenres are cyberpunk, which explores the interface between technology and society; climate fiction, which addresses environmental issues; and space opera, which emphasizes pure adventure in a universe in which space travel is common.

View the full Wikipedia page for Science fiction
↑ Return to Menu

Biological in the context of Human science

Human science (or human sciences in the plural) studies the philosophical, biological, social, justice, and cultural aspects of human life. Human science aims to expand the understanding of the human world through a broad interdisciplinary approach. It encompasses a wide range of fields - including history, philosophy, sociology, psychology, justice studies, evolutionary biology, biochemistry, neurosciences, folkloristics, and anthropology. It is the study and interpretation of the experiences, activities, constructs, and artifacts associated with human beings. The study of human sciences attempts to expand and enlighten the human being's knowledge of its existence, its interrelationship with other species and systems, and the development of artifacts to perpetuate the human expression and thought. It is the study of human phenomena. The study of the human experience is historical and current in nature. It requires the evaluation and interpretation of the historic human experience and the analysis of current human activity to gain an understanding of human phenomena and to project the outlines of human evolution. Human science is an objective, informed critique of human existence and how it relates to reality.Underlying human science is the relationship between various humanistic modes of inquiry within fields such as history, sociology, folkloristics, anthropology, and economics and advances in such things as genetics, evolutionary biology, and the social sciences for the purpose of understanding our lives in a rapidly changing world. Its use of an empirical methodology that encompasses psychological experience in contrasts with the purely positivistic approach typical of the natural sciences which exceeds all methods not based solely on sensory observations. Modern approaches in the human sciences integrate an understanding of human structure, function on and adaptation with a broader exploration of what it means to be human. The term is also used to distinguish not only the content of a field of study from that of the natural science, but also its methodology.

View the full Wikipedia page for Human science
↑ Return to Menu

Biological in the context of National Natural Landmark

The National Natural Landmarks (NNL) Program in the United States recognizes and encourages the conservation of outstanding examples of the natural history of the country. It is the only national natural areas program that identifies and recognizes the best examples of biological and geological features in both public and private ownership. The program was established on May 18, 1962, by United States Secretary of the Interior Stewart Udall.

The program aims to encourage and support voluntary preservation of sites that illustrate the geological and ecological history of the United States. It also hopes to strengthen the public's appreciation of the country's natural heritage. As of July 2024, 605 sites have been added to the National Registry of Natural Landmarks. The registry includes nationally significant geological and ecological features in 48 states, American Samoa, Guam, Puerto Rico, and the U.S. Virgin Islands.

View the full Wikipedia page for National Natural Landmark
↑ Return to Menu

Biological in the context of Stress (biology)

Stress, whether physiological, biological or psychological, is an organism's response to a stressor, such as an environmental condition or change in life circumstances. When stressed by stimuli that alter an organism's environment, multiple systems respond across the body. In humans and most mammals, the autonomic nervous system and hypothalamic-pituitary-adrenal (HPA) axis are the two major systems that respond to stress. Two well-known hormones that humans produce during stressful situations are adrenaline and cortisol.

The sympathoadrenal medullary axis (SAM) may activate the fight-or-flight response through the sympathetic nervous system, which dedicates energy to more relevant bodily systems to acute adaptation to stress, while the parasympathetic nervous system returns the body to homeostasis.

View the full Wikipedia page for Stress (biology)
↑ Return to Menu

Biological in the context of Bioinformatics

Bioinformatics (/ˌb.ˌɪnfərˈmætɪks/ ) is an interdisciplinary field of science that develops computational methods and software tools for understanding biological data, especially when the data sets are large and complex. Bioinformatics uses biology, chemistry, physics, computer science, data science, computer programming, information engineering, mathematics and statistics to analyze and interpret biological data. This process can sometimes be referred to as computational biology, however the distinction between the two terms is often disputed. To some, the term computational biology refers to building and using models of biological systems.

Computational, statistical, and computer programming techniques have been used for computer simulation analyses of biological queries. They include reused specific analysis "pipelines", particularly in the field of genomics, such as by the identification of genes and single nucleotide polymorphisms (SNPs). These pipelines are used to better understand the genetic basis of disease, unique adaptations, desirable properties (especially in agricultural species), or differences between populations. Bioinformatics also includes proteomics, which aims to understand the organizational principles within nucleic acid and protein sequences.

View the full Wikipedia page for Bioinformatics
↑ Return to Menu

Biological in the context of Deep-sea exploration

Deep-sea exploration is the investigation of physical, chemical, and biological conditions on the ocean waters and sea bed beyond the continental shelf, for scientific or commercial purposes. Deep-sea exploration is an aspect of underwater exploration and is considered a relatively recent human activity compared to the other areas of geophysical research, as the deeper depths of the sea have been investigated only during comparatively recent years. The ocean depths still remain a largely unexplored part of the Earth, and form a relatively undiscovered domain.

Scientific deep-sea exploration can be said to have begun when French scientist Pierre-Simon Laplace investigated the average depth of the Atlantic Ocean by observing tidal motions registered on Brazilian and African coasts circa the late 18th or early 19th century. However, the exact date of his investigation is unknown. He calculated the depth to be 3,962 metres (12,999 ft), a value later proven quite accurate by echo-sounding measurement techniques. Later on, due to increasing demand for the installment of submarine cables, accurate measurements of the sea floor depth were required and the first investigations of the sea bottom were undertaken. The first deep-sea life forms were discovered in 1864 when Norwegian researchers Michael Sars and Georg Ossian Sars obtained a sample of a stalked crinoid at a depth of 3,109 m (10,200 ft).

View the full Wikipedia page for Deep-sea exploration
↑ Return to Menu

Biological in the context of Occupational hygiene

Occupational hygiene or industrial hygiene (IH) is the anticipation, recognition, evaluation, control, and confirmation (ARECC) of protection from risks associated with exposures to hazards in, or arising from, the workplace that may result in injury, illness, impairment, or affect the well-being of workers and members of the community. These hazards or stressors are typically divided into the categories biological, chemical, physical, ergonomic and psychosocial. The risk of a health effect from a given stressor is a function of the hazard multiplied by the exposure to the individual or group. For chemicals, the hazard can be understood by the dose response profile most often based on toxicological studies or models. Occupational hygienists work closely with toxicologists (see Toxicology) for understanding chemical hazards, physicists (see Physics) for physical hazards, and physicians and microbiologists for biological hazards (see Microbiology, Tropical medicine, Infection). Environmental and occupational hygienists are considered experts in exposure science and exposure risk management. Depending on an individual's type of job, a hygienist will apply their exposure science expertise for the protection of workers, consumers and/or communities.

View the full Wikipedia page for Occupational hygiene
↑ Return to Menu

Biological in the context of Gender psychology

Sex differences in psychology are differences in the mental functions and behaviors of the sexes and are due to a complex interplay of biological, developmental, and cultural factors. Differences have been found in a variety of fields such as mental health, cognitive abilities, personality, emotion, sexuality, friendship, and tendency towards aggression. Such variation may be innate, learned, or both. Modern research attempts to distinguish between these causes and to analyze any ethical concerns raised. Since behavior is a result of interactions between nature and nurture, researchers are interested in investigating how biology and environment interact to produce such differences, although this is often not possible.

A number of factors combine to influence the development of sex differences, including genetics and epigenetics; differences in brain structure and function; hormones, and socialization.

View the full Wikipedia page for Gender psychology
↑ Return to Menu

Biological in the context of Scientific collection

A scientific collection is a collection of items that are preserved, catalogued, and managed for the purpose of scientific study.

Scientific collections dealing specifically with organisms plants, fungi, animals, insects and their remains, may also be called natural history collections or biological collections. The latter may contain either living stocks or preserved repositories of biodiversity specimens and materials.

View the full Wikipedia page for Scientific collection
↑ Return to Menu

Biological in the context of Biohazard

A biological hazard, or biohazard, is a biological substance that poses a threat (or is a hazard) to the health of living organisms, primarily humans. This could include a sample of a microorganism, virus or toxin that can adversely affect human health. A biohazard could also be a substance harmful to other living beings.

The term and its associated symbol are generally used as a warning, so that those potentially exposed to the substances will know to take precautions. The biohazard symbol was developed in 1966 by Charles Baldwin, an environmental-health engineer working for the Dow Chemical Company on their containment products. It is used in the labeling of biological materials that carry a significant health risk, including viral samples and used hypodermic needles. In Unicode, the biohazard symbol is U+2623 ().

View the full Wikipedia page for Biohazard
↑ Return to Menu