Biogeochemistry in the context of "Rewilding (conservation biology)"

Play Trivia Questions online!

or

Skip to study material about Biogeochemistry in the context of "Rewilding (conservation biology)"

Ad spacer

⭐ Core Definition: Biogeochemistry

Biogeochemistry is the scientific discipline that involves the study of the chemical, physical, geological, and biological processes and reactions that govern the composition of the natural environment (including the biosphere, the cryosphere, the hydrosphere, the pedosphere, the atmosphere, and the lithosphere). In particular, biogeochemistry is the study of biogeochemical cycles, the cycles of chemical elements such as carbon and nitrogen, and their interactions with and incorporation into living things transported through earth scale biological systems in space and time. The field focuses on chemical cycles which are either driven by or influence biological activity. Particular emphasis is placed on the study of carbon, nitrogen, oxygen, sulfur, iron, and phosphorus cycles. Biogeochemistry is a systems science closely related to systems ecology.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Biogeochemistry in the context of Rewilding (conservation biology)

Rewilding is a form of ecological restoration aimed at increasing biodiversity and restoring natural processes. It differs from other forms of ecological restoration in that rewilding aspires to reduce human influence on ecosystems. It is also distinct from other forms of restoration in that, while it places emphasis on recovering geographically specific sets of ecological interactions and functions that would have maintained ecosystems prior to human influence, rewilding is open to novel or emerging ecosystems which encompass new species and new interactions.

A key feature of rewilding is its focus on replacing human interventions with natural processes. Rewilding enables the return of intact, large mammal assemblages, to promote the restoration of trophic networks. This mechanism of rewilding is a process of restoring natural processes by introducing or re-introducing large mammals to promote resilient, self-regulating, and self-sustaining ecosystems. Large mammals can influence ecosystems by altering biogeochemical pathways as they contribute to unique ecological roles, they are landscape engineers that aid in shaping the structure and composition of natural habitats. Rewilding projects are often part of programs for habitat restoration and conservation biology, and should be based on sound socio-ecological theory and evidence.

↓ Explore More Topics
In this Dossier

Biogeochemistry in the context of Hydrothermal vent

Hydrothermal vents are fissures on the seabed from which geothermally heated water discharges. They are commonly found near volcanically active places, areas where tectonic plates are moving apart at mid-ocean ridges, ocean basins, and hotspots. The dispersal of hydrothermal fluids throughout the global ocean at active vent sites creates hydrothermal plumes. Hydrothermal deposits are rocks and mineral ore deposits formed by the action of hydrothermal vents.

Hydrothermal vents exist because the Earth is both geologically active and has large amounts of water on its surface and within its crust. Under the sea, they may form features called black smokers or white smokers, which deliver a wide range of elements to the world's oceans, thus contributing to global marine biogeochemistry. Relative to the majority of the deep sea, the areas around hydrothermal vents are biologically more productive, often hosting complex communities fueled by the chemicals dissolved in the vent fluids. Chemosynthetic bacteria and archaea found around hydrothermal vents form the base of the food chain, supporting diverse organisms including giant tube worms, clams, limpets, and shrimp. Active hydrothermal vents are thought to exist on Jupiter's moon Europa and Saturn's moon Enceladus, and it is speculated that ancient hydrothermal vents once existed on Mars.

↑ Return to Menu

Biogeochemistry in the context of Climatology

Climatology (from Greek κλίμα, klima, "slope"; and -λογία, -logia) or climate science is the scientific study of Earth's climate, typically defined as weather conditions averaged over a period of at least 30 years. Climate concerns the atmospheric condition during an extended to indefinite period of time; weather is the condition of the atmosphere during a relative brief period of time. The main topics of research are the study of climate variability, mechanisms of climate changes and modern climate change. This topic of study is regarded as part of the atmospheric sciences and a subdivision of physical geography, which is one of the Earth sciences. Climatology includes some aspects of oceanography and biogeochemistry.

The main methods employed by climatologists are the analysis of observations and modelling of the physical processes that determine climate. Short term weather forecasting can be interpreted in terms of knowledge of longer-term phenomena of climate, for instance climatic cycles such as the El Niño–Southern Oscillation (ENSO), the Madden–Julian oscillation (MJO), the North Atlantic oscillation (NAO), the Arctic oscillation (AO), the Pacific decadal oscillation (PDO), and the Interdecadal Pacific Oscillation (IPO). Climate models are used for a variety of purposes from studying the dynamics of the weather and climate system to predictions of future climate.

↑ Return to Menu

Biogeochemistry in the context of Alpine lake

An alpine lake is a high-altitude lake in a mountainous area, usually near or above the tree line, with extended periods of ice cover. These lakes are commonly glacial lakes formed from glacial activity (either current or in the past) but can also be formed from geological processes such as volcanic activity (volcanogenic lakes) or landslides (barrier lakes). Many alpine lakes that are fed from glacial meltwater have the characteristic bright turquoise green color as a result of glacial flour, suspended minerals derived from a glacier scouring the bedrock. When active glaciers are not supplying water to the lake, such as a majority of Rocky Mountains alpine lakes in the United States, the lakes may still be bright blue due to the lack of algal growth resulting from cold temperatures, lack of nutrient run-off from surrounding land, and lack of sediment input. The coloration and mountain locations of alpine lakes attract lots of recreational activity.

Alpine lakes are some of the most abundant types of lakes on Earth. In the Swiss Alps alone, there are nearly 1,000 alpine lakes, most of which formed after the Little Ice Age. As global temperatures continue to rise, more alpine lakes will be formed as glaciers recede and provide more run-off to surrounding areas, and existing lakes will see more biogeochemical changes and ecosystem shifts. An alpine lake's trophic state (i.e., level of biological productivity) progresses with age (e.g., low productivity after formation and increased productivity with vegetation and soil maturity in the surrounding watershed), but anthropogenic effects such as agriculture and climate change are rapidly affecting productivity levels in some lakes. These lakes are sensitive ecosystems and are particularly vulnerable to climate change due to the highly pronounced changes to ice and snow cover. Due to the importance of alpine lakes as sources of freshwater for agricultural and human use, the physical, chemical, and biological responses to climate change are being extensively studied.

↑ Return to Menu

Biogeochemistry in the context of Soil ecology

Soil ecology studies interactions among soil organisms, and their environment. It is particularly concerned with the cycling of nutrients, soil aggregate formation and soil biodiversity.

↑ Return to Menu

Biogeochemistry in the context of Pedosphere

The pedosphere (from Ancient Greek πέδον (pédon) 'ground, earth' and σφαῖρα (sphaîra) 'sphere') is the outermost layer of the Earth that is composed of soil and subject to soil formation processes. It exists at the interface of the lithosphere, atmosphere, hydrosphere and biosphere. The pedosphere is the skin of the Earth and only develops when there is a dynamic interaction between the atmosphere (air in and above the soil), biosphere (living organisms), lithosphere (unconsolidated regolith and consolidated bedrock) and the hydrosphere (water in, on and below the soil). The pedosphere is the foundation of terrestrial life on Earth.

The pedosphere acts as the mediator of chemical and biogeochemical flux into and out of these respective systems and is made up of gaseous, mineralic, fluid and biologic components. The pedosphere lies within the Critical Zone, a broader interface that includes vegetation, pedosphere, aquifer systems, regolith and finally ends at some depth in the bedrock where the biosphere and hydrosphere cease to make significant changes to the chemistry at depth. As part of the larger global system, any particular environment in which soil forms is influenced solely by its geographic position on the globe as climatic, geologic, biologic and anthropogenic changes occur with changes in longitude and latitude.

↑ Return to Menu

Biogeochemistry in the context of Soil formation

Soil formation, also known as pedogenesis, is the process of soil genesis as regulated by the effects of place, environment, and history. Biogeochemical processes act to both create and destroy order (anisotropy) within soils. These alterations lead to the development of layers, termed soil horizons, distinguished by differences in color, structure, texture, and chemistry. These features occur in patterns of soil type distribution, forming in response to differences in soil forming factors.

Pedogenesis is studied as a branch of pedology, the study of soil in its natural environment. Other branches of pedology are the study of soil morphology and soil classification. The study of pedogenesis is important to understanding soil distribution patterns in current (soil geography) and past (paleopedology) geologic periods.

↑ Return to Menu

Biogeochemistry in the context of Journal of Ecology

The Journal of Ecology is a bimonthly peer-reviewed scientific journal covering all aspects of the ecology of plants. It was established in 1913 and is published by Wiley-Blackwell on behalf of the British Ecological Society.

The journal publishes papers on plant ecology (including algae) in both terrestrial and aquatic ecosystems. In addition to population and community ecology, articles on biogeochemistry, ecosystems, microbial ecology, physiological plant ecology, climate change, molecular genetics, mycorrhizal ecology, and the interactions between plants and organisms such as animals or bacteria, are published regularly. Besides primary research articles, it publishes "Essay Reviews" and "Forum" articles. In 2008, the first papers in a new series called "Future Directions" were published. These short papers are intended to stimulate debate as to where a field within plant ecology is going, or needs to go.

↑ Return to Menu