Bilaterian in the context of Triploblastic


Bilaterian in the context of Triploblastic

Bilaterian Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Bilaterian in the context of "Triploblastic"


⭐ Core Definition: Bilaterian

Bilateria (/ˌbləˈtɪəriə/) is a large clade of animals characterised by bilateral symmetry during embryonic development. This means their body plans are laid around a longitudinal axis with a front (or "head") and a rear (or "tail") end, as well as a left–right–symmetrical belly (ventral) and back (dorsal) surface. Nearly all bilaterians maintain a bilaterally symmetrical body as adults; the most notable exception is the echinoderms, which have pentaradial symmetry as adults, but bilateral symmetry as embryos. With few exceptions, bilaterian embryos are triploblastic, having three germ layers: endoderm, mesoderm and ectoderm, and have complete digestive tracts with a separate mouth and anus. Some bilaterians lack body cavities, while others have a primary body cavity derived from the blastocoel, or a secondary cavity, the coelom. Cephalization is a characteristic feature among most bilaterians, where the sense organs and central nerve ganglia become concentrated at the front end of the animal.

Bilaterians constitute one of the five main lineages of animals, the other four being Porifera (sponges), Cnidaria (jellyfish, hydrozoans, sea anemones and corals), Ctenophora (comb jellies) and Placozoa. They rapidly diversified in the late Ediacaran and the Cambrian, and are now by far the most successful animal lineage, with over 98% of known animal species. Bilaterians are traditionally classified as either deuterostomes or protostomes, based on whether the blastopore becomes the anus or mouth. The phylum Xenacoelomorpha, once thought to be flatworms, was erected in 2011, and has provided an extra challenge to bilaterian taxonomy, as they likely do not belong to either group.

↓ Menu
HINT:

In this Dossier

Bilaterian in the context of Neoproterozoic

The Neoproterozoic is the last of the three geologic eras of the Proterozoic eon, spanning from 1 billion to 538.8 million years ago, and is the last era of the Precambrian "supereon". It is preceded by the Mesoproterozoic era and succeeded by the Paleozoic era of the Phanerozoic eon, and is further subdivided into three periods, the Tonian, Cryogenian and Ediacaran.

One of the most severe glaciation events known in the geologic record occurred during the Cryogenian period of the Neoproterozoic, when global ice sheets may have reached the equator and created a "Snowball Earth" lasting about 100 million years. The earliest fossils of complex life are found in the Tonian period in the form of Otavia, a primitive sponge, and the earliest fossil evidence of metazoan radiation are found in the Ediacaran period, which included the namesaked Ediacaran biota as well as the oldest definitive cnidarians and bilaterians in the fossil record.

View the full Wikipedia page for Neoproterozoic
↑ Return to Menu

Bilaterian in the context of Avalon Explosion

The Avalon explosion, named from the Precambrian faunal trace fossils discovered on the Avalon Peninsula in Newfoundland, eastern Canada, is a proposed evolutionary radiation of prehistoric animals about 575 million years ago in the Ediacaran period, with the Avalon explosion being one of three eras grouped in this time period. This evolutionary event is believed to have occurred some 33 million years earlier than the Cambrian explosion, which had been long thought to be when complex life started on Earth.

Scientists are still unsure of the full extent behind the development of the Avalon explosion, which resulted in a rapid increase in metazoan biodiversity, including the first appearance of some extant infrakingdoms/superphyla such as cnidarians and bilaterians. Many of the Avalon explosion animals are sessile soft-bodied organisms living in deep marine environments, and the first stages of the Avalon explosion were observed through comparatively minimal species.

View the full Wikipedia page for Avalon Explosion
↑ Return to Menu

Bilaterian in the context of Kimberella

Kimberella is an extinct genus of marine bilaterian known only from rocks of the Ediacaran period. The slug-like organism fed by scratching the microbial surface on which it dwelt in a manner similar to the gastropods, although its affinity with this group is contentious.

Specimens were first found in Australia's Ediacara Hills, but recent research has concentrated on the numerous finds near the White Sea in Russia, which cover an interval of time from 555 to 558 million years ago. As with many fossils from this time, its evolutionary relationships to other organisms are hotly debated. Paleontologists initially classified Kimberella as a type of Cubozoan, but, since 1997, features of its anatomy and its association with scratch marks resembling those made by a radula have been interpreted as signs that it may have been a mollusc. Although some paleontologists dispute its classification as a mollusc, it is generally accepted as being at least a bilaterian.

View the full Wikipedia page for Kimberella
↑ Return to Menu

Bilaterian in the context of Flatworm

Platyhelminthes (from Ancient Greek πλατύ platy 'flat' and ἕλμινς helmins 'parasitic worm') is a phylum of relatively simple bilaterian, unsegmented, soft-bodied invertebrates commonly called flatworms or flat worms. Being acoelomates (having no body cavity), and having no specialised circulatory and respiratory organs, they are restricted to having flattened shapes that allow oxygen and nutrients to pass through their bodies by diffusion. The digestive cavity has only one opening for both ingestion (intake of nutrients) and egestion (removal of undigested wastes); as a result, the food can not be processed continuously.

In traditional medicinal texts, Platyhelminthes are divided into Turbellaria, which are mostly non-parasitic animals such as planarians, and three entirely parasitic groups: Cestoda, Trematoda and Monogenea; however, since the turbellarians have since been proven not to be monophyletic, this classification is now deprecated. Free-living flatworms are mostly predators, and live in water or in shaded, humid terrestrial environments, such as leaf litter. Cestodes (tapeworms) and trematodes (flukes) have complex life-cycles, with mature stages that live as parasites in the digestive systems of fish or land vertebrates, and intermediate stages that infest secondary hosts. The eggs of trematodes are excreted from their main hosts, whereas adult cestodes generate vast numbers of hermaphroditic, segment-like proglottids that detach when mature, are excreted, and then release eggs. Unlike the other parasitic groups, the monogeneans are external parasites infesting aquatic animals, and their larvae metamorphose into the adult form after attaching to a suitable host.

View the full Wikipedia page for Flatworm
↑ Return to Menu

Bilaterian in the context of Cephalization

Cephalization is an evolutionary trend in bilaterian animals that, over a sufficient number of generations, concentrates the special sense organs and nerve ganglia towards the front of the body where the mouth is located, often producing an enlarged head. This is associated with the animal's movement direction and bilateral symmetry. Cephalization of the nervous system has led to the formation of a brain with varying degrees of functional centralization in three phyla of bilaterian animals, namely the arthropods, cephalopod molluscs, and vertebrates. Hox genes organise aspects of cephalization in the bilaterians.

View the full Wikipedia page for Cephalization
↑ Return to Menu

Bilaterian in the context of Deuterostome

Deuterostomes (from Greek: lit.'second mouth') are bilaterian animals of the superphylum Deuterostomia (/ˌdjtərəˈstmi.ə/), typically characterized by their anus forming before the mouth during embryonic development. Deuterostomia comprises three phyla: Chordata, Echinodermata, Hemichordata, and the extinct clade Cambroernida.

In deuterostomes, the developing embryo's first opening (the blastopore) becomes the anus and cloaca, while the mouth is formed at a different site later on. This was initially the group's distinguishing characteristic, but deuterostomy has since been discovered among protostomes as well. The deuterostomes are also known as enterocoelomates, because their coelom develops through pouching of the gut, enterocoely.

View the full Wikipedia page for Deuterostome
↑ Return to Menu

Bilaterian in the context of Xenacoelomorpha

Xenacoelomorpha (/ˌzɛnəˌsɛlˈmɔːrfə/) is a small phylum of bilaterian invertebrate animals, consisting of two sister groups: xenoturbellids and acoelomorphs. This new phylum was named in February 2011 and suggested based on morphological synapomorphies (physical appearances shared by the animals in the clade), which was then confirmed by phylogenomic analyses of molecular data (similarities in the DNA of the animals within the clade).

View the full Wikipedia page for Xenacoelomorpha
↑ Return to Menu

Bilaterian in the context of Tail

The tail is the elongated section at the rear end of a bilaterian animal's body; in general, the term refers to a distinct, flexible appendage extending backwards from the midline of the torso. In vertebrate animals that evolved to lose their tails (e.g. frogs and hominid primates), the coccyx is the homologous vestigial of the tail. While tails are primarily considered a feature of vertebrates, some invertebrates such as scorpions and springtails, as well as snails and slugs, have tail-like appendages that are also referred to as tails.

Tail-shaped objects are sometimes referred to as "caudate" (e.g. caudate lobe, caudate nucleus), and the body part associated with or proximal to the tail are given the adjective "caudal" (which is considered a more precise anatomical terminology).

View the full Wikipedia page for Tail
↑ Return to Menu

Bilaterian in the context of Oral cavity

A mouth also referred to as the oral is the body orifice through which many animals ingest food and vocalize. The body cavity immediately behind the mouth opening, known as the oral cavity (or cavum oris in Latin), is also the first part of the alimentary canal, which leads to the pharynx and the gullet. In tetrapod vertebrates, the mouth is bounded on the outside by the lips and cheeks — thus the oral cavity is also known as the buccal cavity (from Latin bucca, meaning "cheek") — and contains the tongue on the inside. Except for some groups like birds and lissamphibians, vertebrates usually have teeth in their mouths, although some fish species have pharyngeal teeth instead of oral teeth.

Most bilaterian phyla, including arthropods, molluscs and chordates, have a two-opening gut tube with a mouth at one end and an anus at the other. Which end forms first in ontogeny is a criterion used to classify bilaterian animals into protostomes and deuterostomes.

View the full Wikipedia page for Oral cavity
↑ Return to Menu

Bilaterian in the context of Coelom

The coelom (or celom) is the main body cavity in many animals and is positioned inside the body to surround and contain the digestive tract and other organs. In some animals, it is lined with mesothelium. In other animals, such as molluscs, it remains undifferentiated. In the past, and for practical purposes, coelom characteristics have been used to classify bilaterian animal phyla into informal groups.

View the full Wikipedia page for Coelom
↑ Return to Menu

Bilaterian in the context of Acoels

Acoela, or the acoels, is an order of small and simple invertebrates in the subphylum Xenacoela of phylum Xenacoelomorpha, a deep branching bilaterian group of animals, which resemble flatworms. Historically they were treated as an order of turbellarian flatworms. About 400 species are known, but probably many more not yet described.

The etymology of "acoel" is from the Ancient Greek words (a), the alpha privative, expressing negation or absence, and κοιλία (koilía), meaning "cavity". This refers to the fact that acoels have a structure lacking a fluid-filled body cavity.

View the full Wikipedia page for Acoels
↑ Return to Menu