Bicycle and motorcycle dynamics in the context of "Vehicle dynamics"

Play Trivia Questions online!

or

Skip to study material about Bicycle and motorcycle dynamics in the context of "Vehicle dynamics"

Ad spacer

⭐ Core Definition: Bicycle and motorcycle dynamics

Bicycle and motorcycle dynamics is the science of the motion of bicycles and motorcycles and their components, due to the forces acting on them. Dynamics falls under a branch of physics known as classical mechanics. Bike motions of interest include balancing, steering, braking, accelerating, suspension activation, and vibration. The study of these motions began in the late 19th century and continues today.

Bicycles and motorcycles are both single-track vehicles and so their motions have many fundamental attributes in common and are fundamentally different from and more difficult to study than other wheeled vehicles such as dicycles, tricycles, and quadracycles. As with unicycles, bikes lack lateral stability when stationary, and under most circumstances can only remain upright when moving forward. Experimentation and mathematical analysis have shown that a bike stays upright when it is steered to keep its center of mass over its wheels. This steering is usually supplied by a rider, or in certain circumstances, by the bike itself. Several factors, including geometry, mass distribution, and gyroscopic effect all contribute in varying degrees to this self-stability, but long-standing hypotheses and claims that any single effect, such as gyroscopic or trail (the distance between steering axis and ground contact of the front tire), is solely responsible for the stabilizing force have been discredited.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Bicycle and motorcycle dynamics in the context of Vehicle dynamics

Vehicle dynamics is the study of vehicle motion, e.g., how a vehicle's forward movement changes in response to driver inputs, propulsion system outputs, ambient conditions, air/surface/water conditions, etc.Vehicle dynamics is a part of engineering primarily based on classical mechanics.It may be applied for motorized vehicles (such as automobiles), bicycles and motorcycles, aircraft, and watercraft.

↓ Explore More Topics
In this Dossier

Bicycle and motorcycle dynamics in the context of Angular momentum

Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved. Bicycles and motorcycles, flying discs, rifled bullets, and gyroscopes owe their useful properties to conservation of angular momentum. Conservation of angular momentum is also why hurricanes form spirals and neutron stars have high rotational rates. In general, conservation limits the possible motion of a system, but it does not uniquely determine it.

The three-dimensional angular momentum for a point particle is classically represented as a pseudovector r × p, the cross product of the particle's position vector r (relative to some origin) and its momentum vector; the latter is p = mv in Newtonian mechanics. Unlike linear momentum, angular momentum depends on where this origin is chosen, since the particle's position is measured from it.

↑ Return to Menu

Bicycle and motorcycle dynamics in the context of Single-track vehicle

A single-track vehicle is a vehicle that leaves a single ground track as it moves forward. Single-track vehicles usually have little or no lateral stability when stationary but develop it when moving forward or controlled. In the case of wheeled vehicles, the front and rear wheel usually follow slightly different paths when turning or when out of alignment.

Single-track vehicles have unique dynamics that, in the case of wheeled vehicles, are discussed at length in bicycle and motorcycle dynamics, that usually require leaning into a turn, and that usually include countersteering. Single-track vehicles can roll on wheels, slide, float, or hydroplane.

↑ Return to Menu

Bicycle and motorcycle dynamics in the context of Bicycle tire

A bicycle tire is a tire that fits on the wheel of a bicycle or similar vehicle. These tires may also be used on tricycles, wheelchairs, and handcycles, frequently for racing. Bicycle tires provide an important source of suspension, generate the lateral forces necessary for balancing and turning, and generate the longitudinal forces necessary for propulsion and braking. Although the use of a pneumatic tire greatly reduces rolling resistance compared to the use of a rigid wheel or solid tire, the tires are still typically the second largest source, after wind resistance (air drag), of power consumption on a level road. The modern detachable pneumatic bicycle tire contributed to the popularity and eventual dominance of the safety bicycle.

Bicycle tires are also used on unicycles, tricycles, quadracycles, tandem bicycles, hand cycles, bicycle trailers, and trailer bikes.

↑ Return to Menu

Bicycle and motorcycle dynamics in the context of Bicycle and motorcycle geometry

Bicycle and motorcycle geometry is the collection of key measurements (lengths and angles) that define a particular bike configuration. Primary among these are wheelbase, steering axis angle, fork offset, and trail. These parameters have a major influence on how a bike handles.

↑ Return to Menu

Bicycle and motorcycle dynamics in the context of Damped

In physical systems, damping is the loss of energy of an oscillating system by dissipation. Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. Examples of damping include viscous damping in a fluid (see viscous drag), surface friction, radiation, resistance in electronic oscillators, and absorption and scattering of light in optical oscillators. Damping not based on energy loss can be important in other oscillating systems such as those that occur in biological systems and bikes (ex. Suspension (mechanics)). Damping is not to be confused with friction, which is a type of dissipative force acting on a system. Friction can cause or be a factor of damping.

Many systems exhibit oscillatory behavior when they are disturbed from their position of static equilibrium. A mass suspended from a spring, for example, might, if pulled and released, bounce up and down. On each bounce, the system tends to return to its equilibrium position, but overshoots it. Sometimes losses (e.g. frictional) damp the system and can cause the oscillations to gradually decay in amplitude towards zero or attenuate.

↑ Return to Menu