Beta-glucan in the context of "Polysaccharides"

Play Trivia Questions online!

or

Skip to study material about Beta-glucan in the context of "Polysaccharides"

Ad spacer

⭐ Core Definition: Beta-glucan

Beta-glucans, β-glucans comprise a group of β-D-glucose polysaccharides (glucans) naturally occurring in the cell walls of cereals, bacteria, and fungi, with significantly differing physicochemical properties dependent on source. Typically, β-glucans form a linear backbone with 1–3 β-glycosidic bonds but vary with respect to molecular mass, solubility, viscosity, branching structure, and gelation properties, causing diverse physiological effects in animals.

At dietary intake levels of at least 3 g per day, oat fiber β-glucan decreases blood levels of LDL cholesterol and so may reduce the risk of cardiovascular diseases. β-glucans are natural gums and are used as texturing agents in various nutraceutical and cosmetic products, and as soluble fiber supplements.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Beta-glucan in the context of Polysaccharide

Polysaccharides (/ˌpɒliˈsækərd/; from Ancient Greek πολύς (polús) 'many, much' and σάκχαρ (sákkhar) 'sugar') are "Compounds consisting of a large number of monosaccharides linked glycosidically". They are the most abundant carbohydrates in food. Their structures range from linear to highly branched polymers. Examples include storage polysaccharides such as starch, glycogen, and galactogen and structural polysaccharides such as hemicellulose and chitin. The term "glycan" is synonymous with polysaccharide, but often glycans are discussed in the context of glycoconjugates, i.e. hybrids of polysaccharides and proteins or lipids.

Polysaccharides are often heterogeneous, containing slight modifications of the repeating unit. They may be amorphous (e.g. starch) or insoluble in water (e.g. cellulose).

↑ Return to Menu

Beta-glucan in the context of Dietary fiber

Dietary fiber, fibre, or roughage is the portion of plant-derived food that cannot be completely broken down by human digestive enzymes. Dietary fibers are diverse in chemical composition and can be grouped generally by their solubility, viscosity and fermentability which affect how fibers are processed in the body. Dietary fiber has two main subtypes: soluble fiber and insoluble fiber which are components of plant-based foods such as legumes, whole grains, cereals, vegetables, fruits, and nuts or seeds. A diet high in regular fiber consumption is generally associated with supporting health and lowering the risk of several diseases. Dietary fiber consists of non-starch polysaccharides and other plant components such as cellulose, resistant starch, resistant dextrins, inulins, lignins, chitins, pectins, beta-glucans, and oligosaccharides.

Food sources of dietary fiber have traditionally been divided according to whether they provide soluble or insoluble fiber. Plant foods contain both types of fiber in varying amounts according to the fiber characteristics of viscosity and fermentability. Advantages of consuming fiber depend upon which type is consumed. Bulking fibers – such as cellulose and hemicellulose (including psyllium) – absorb and hold water, promoting bowel movement regularity. Viscous fibers – such as beta-glucan and psyllium – thicken the fecal mass. Fermentable fibers – such as resistant starch, xanthan gum, and inulin – feed the bacteria and microbiota of the large intestine and are metabolized to yield short-chain fatty acids, which have diverse roles in gastrointestinal health.

↑ Return to Menu

Beta-glucan in the context of Prebiotic (nutrition)

Prebiotics are compounds in food that foster growth or activity of beneficial microorganisms such as bacteria and fungi. The most common environment concerning their effects on human health is the gastrointestinal tract, where prebiotics can alter the composition of organisms in the gut microbiome.

Dietary prebiotics are typically nondigestible fiber compounds that pass undigested through the upper part of the gastrointestinal tract and help growth or activity of advantageous bacteria in the colon by acting as substrates for them. They were first identified and named by Marcel Roberfroid in 1995. Depending on the jurisdiction, they may have regulatory scrutiny as food additives for the health claims made for marketing purposes. Common prebiotics used in food manufacturing include beta-glucan from oats, resistant starch from grains and beans, and inulin from chicory root.

↑ Return to Menu