Bernoulli process in the context of "Binomial distribution"

Play Trivia Questions online!

or

Skip to study material about Bernoulli process in the context of "Binomial distribution"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Bernoulli process in the context of Binomial distribution

In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability q = 1 − p). A single success/failure experiment is also called a Bernoulli trial or Bernoulli experiment, and a sequence of outcomes is called a Bernoulli process. For a single trial, that is, when n = 1, the binomial distribution is a Bernoulli distribution. The binomial distribution is the basis for the binomial test of statistical significance.

The binomial distribution is frequently used to model the number of successes in a sample of size n drawn with replacement from a population of size N. If the sampling is carried out without replacement, the draws are not independent and so the resulting distribution is a hypergeometric distribution, not a binomial one. However, for N much larger than n, the binomial distribution remains a good approximation, and is widely used.

↓ Explore More Topics
In this Dossier

Bernoulli process in the context of Bernoulli trial

In the theory of probability and statistics, a Bernoulli trial (or binomial trial) is a random experiment with exactly two possible outcomes, "success" and "failure", in which the probability of success is the same every time the experiment is conducted. It is named after Jacob Bernoulli, a 17th-century Swiss mathematician, who analyzed them in his Ars Conjectandi (1713).

The mathematical formalization and advanced formulation of the Bernoulli trial is known as the Bernoulli process.

↑ Return to Menu

Bernoulli process in the context of Checking whether a coin is fair

In statistics, the question of checking whether a coin is fair is one whose importance lies, firstly, in providing a simple problem on which to illustrate basic ideas of statistical inference and, secondly, in providing a simple problem that can be used to compare various competing methods of statistical inference, including decision theory. The practical problem of checking whether a coin is fair might be considered as easily solved by performing a sufficiently large number of trials, but statistics and probability theory can provide guidance on two types of question; specifically those of how many trials to undertake and of the accuracy of an estimate of the probability of turning up heads, derived from a given sample of trials.

A fair coin is an idealized randomizing device with two states (usually named "heads" and "tails") which are equally likely to occur. It is based on the coin flip used widely in sports and other situations where it is required to give two parties the same chance of winning. Either a specially designed chip or more usually a simple currency coin is used, although the latter might be slightly "unfair" due to an asymmetrical weight distribution, which might cause one state to occur more frequently than the other, giving one party an unfair advantage. So it might be necessary to test experimentally whether the coin is in fact "fair" – that is, whether the probability of the coin's falling on either side when it is tossed is exactly 50%. It is of course impossible to rule out arbitrarily small deviations from fairness such as might be expected to affect only one flip in a lifetime of flipping; also it is always possible for an unfair (or "biased") coin to happen to turn up exactly 10 heads in 20 flips. Therefore, any fairness test must only establish a certain degree of confidence in a certain degree of fairness (a certain maximum bias). In more rigorous terminology, the problem is of determining the parameters of a Bernoulli process, given only a limited sample of Bernoulli trials.

↑ Return to Menu