Batrachochytrium dendrobatidis in the context of "Joyce E. Longcore"

Play Trivia Questions online!

or

Skip to study material about Batrachochytrium dendrobatidis in the context of "Joyce E. Longcore"




⭐ Core Definition: Batrachochytrium dendrobatidis

Batrachochytrium dendrobatidis (/bəˌtrkˈkɪtriəm ˈdɛndrbətdɪs/ bə-TRAY-koh-KIT-ree-əm DEN-droh-bə-ty-dis), also known as Bd or the amphibian chytrid fungus, is a fungus that causes the disease chytridiomycosis in amphibians.

Since its discovery in 1998 by Lee Berger and species description in 1999 by Joyce E. Longcore, the disease devastated amphibian populations around the world, in a global decline towards multiple extinctions, part of the Holocene extinction. A recently described second species, B. salamandrivorans, also causes chytridiomycosis and death in salamanders.

↓ Menu

👉 Batrachochytrium dendrobatidis in the context of Joyce E. Longcore

Joyce E. Longcore is a mycologist and an associate research professor at the University of Maine. She is most well known for first culturing and describing Batrachochytrium dendrobatidis which is a species of Chytridiomycota fungi that was the first to be known to attack vertebrates. She continues to collect and isolate Chytridiomycota cultures for other researches to use for their own studies.

↓ Explore More Topics
In this Dossier

Batrachochytrium dendrobatidis in the context of Extinction risk from climate change

There are several plausible pathways that could lead to plant and animal species extinction from climate change. Every species has evolved to exist within a certain ecological niche, but climate change leads to changes of temperature and average weather patterns. These changes can push climatic conditions outside of the species' niche, and ultimately render it extinct. Normally, species faced with changing conditions can either adapt in place through microevolution or move to another habitat with suitable conditions. However, the speed of recent climate change is very fast. Due to this rapid change, for example cold-blooded animals (a category which includes amphibians, reptiles and all invertebrates) may struggle to find a suitable habitat within 50 km of their current location at the end of this century (for a mid-range scenario of future global warming).

Climate change also increases both the frequency and intensity of extreme weather events, which can directly wipe out regional populations of species. Those species occupying coastal and low-lying island habitats can also become extinct by sea level rise. This has already happened with Bramble Cay melomys in Australia. Finally, climate change has been linked with the increased prevalence and global spread of certain diseases affecting wildlife. This includes Batrachochytrium dendrobatidis, a fungus that is one of the main drivers of the worldwide decline in amphibian populations.

↑ Return to Menu

Batrachochytrium dendrobatidis in the context of Chytridiomycota

Chytridiomycota are a division of zoosporic organisms in the kingdom Fungi, informally known as chytrids. The name is derived from the Ancient Greek χυτρίδιον (khutrídion), meaning "little pot", describing the structure containing unreleased zoospores. Chytrids are one of the earliest diverging fungal lineages, and their membership in kingdom Fungi is demonstrated with chitin cell walls, a posterior whiplash flagellum, absorptive nutrition, use of glycogen as an energy storage compound, and synthesis of lysine by the α-amino adipic acid (AAA) pathway.

Chytrids are saprobic, degrading refractory materials such as chitin and keratin, and sometimes act as parasites. There has been a significant increase in the research of chytrids since the discovery of Batrachochytrium dendrobatidis, the causal agent of chytridiomycosis.

↑ Return to Menu

Batrachochytrium dendrobatidis in the context of Zoosporic

A zoospore is a motile asexual spore that uses a flagellum for locomotion in aqueous or moist environments. Also called a swarm spore, these spores are created by some protists, bacteria, and fungi to propagate themselves. Certain zoospores are infectious and transmittable, such as Batrachochytrium dendrobatidis, a fungal zoospore that causes high rates of mortality in amphibians.

↑ Return to Menu

Batrachochytrium dendrobatidis in the context of Chytridiomycosis

Chytridiomycosis (/kˌtrɪdiəmˈksɪs/ ky-TRID-ee-ə-my-KOH-sis) is an infectious disease in amphibians, caused by the chytrid fungi Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans. Chytridiomycosis has been linked to dramatic population declines or extinctions of amphibian species in western North America, Central America, South America, eastern Australia, east Africa (Tanzania), and Dominica and Montserrat in the Caribbean. Much of the New World is also at risk of the disease arriving within the coming years. The fungus is capable of causing sporadic deaths in some amphibian populations and 100% mortality in others. No effective measure is known for control of the disease in wild populations. Various clinical signs are seen by individuals affected by the disease. A number of options are possible for controlling this disease-causing fungus, though none has proved to be feasible on a large scale. The disease has been proposed as a contributing factor to a global decline in amphibian populations that apparently has affected about 30% of the amphibian species of the world. Some research found evidence insufficient for linking chytrid fungi and chytridiomycosis to global amphibian declines, but more recent research establishes a connection and attributes the spread of the disease to its transmission through international trade routes into native ecosystems.

↑ Return to Menu

Batrachochytrium dendrobatidis in the context of Lee Berger (biologist)

Lee Berger FAA (born 16 January 1970), is an Australian biologist and veterinarian, who discovered during her PhD that the fungus Batrachochytrium dendrobatidis was responsible for the decline and extinction of hundreds of amphibian species.

↑ Return to Menu

Batrachochytrium dendrobatidis in the context of Batrachochytrium salamandrivorans

Batrachochytrium salamandrivorans (Bsal) is a pathogenic chytrid fungus that infects amphibian species. Although salamanders and newts seem to be the most susceptible, some anuran species are also affected. Bsal has emerged recently and poses a major threat to species in Europe and North America.

It was described in 2013 based on a strain collected from skin tissue of fire salamanders Salamandra salamandra. The pathogen, unidentified up to then, had devastated fire salamander populations in the Netherlands. Molecular phylogenetics confirmed it as related to the well known chytrid B. dendrobatidis. Like this species, it causes chytridiomycosis, which is manifested in skin lesions and is lethal for the salamanders. Damage to the epidermal layer can be extensive and may result in osmoregulatory issues or sepsis.

↑ Return to Menu

Batrachochytrium dendrobatidis in the context of Atelopus varius

Atelopus varius, the Costa Rican variable harlequin toad or clown frog, is a small Neotropical true toad from the family Bufonidae. Once ranging from Costa Rica to Panama, A. varius is now listed as critically endangered and has been reduced to a single remnant population near Quepos, Costa Rica (rediscovered in 2003), and has only relict populations in western Panama. Recent variation in air temperature, precipitation, stream flow patterns, and the subsequent spread of a pathogenic chytrid fungus (Batrachochytrium dendrobatidis) linked to global climate change have been the leading cause of decline for A. varius. A. zeteki has been considered a subspecies of A. varius, but is now generally considered a separate species.

↑ Return to Menu