Baryon acoustic oscillations in the context of Daniel Pomarède


Baryon acoustic oscillations in the context of Daniel Pomarède

⭐ Core Definition: Baryon acoustic oscillations

In cosmology, baryon acoustic oscillations (BAO) are fluctuations in the density of the visible baryonic matter (normal matter) of the universe, caused by acoustic density waves in the primordial plasma of the early universe. In the same way that supernovae provide a "standard candle" for astronomical observations, BAO matter clustering provides a "standard ruler" for length scale in cosmology. The length of this standard ruler is given by the maximum distance the acoustic waves could travel in the primordial plasma before the plasma cooled to the point where it became neutral atoms (the epoch of recombination), which stopped the expansion of the plasma density waves, "freezing" them into place. The length of this standard ruler (≈490 million light years in today's universe) can be measured by looking at the large scale structure of matter using astronomical surveys. BAO measurements help cosmologists understand more about the nature of dark energy (which causes the accelerating expansion of the universe) by constraining cosmological parameters.

↓ Menu
HINT:

👉 Baryon acoustic oscillations in the context of Daniel Pomarède

Daniel Pomarède (born October 3, 1971) is a staff scientist at the Institute of Research into the Fundamental Laws of the Universe, CEA Paris-Saclay University. He co-discovered Laniakea, our home supercluster of galaxies, and Ho'oleilana, a spherical shell-like structure 1 billion light-years in diameter found in the distribution of galaxies, possibly the remnant of a Baryon Acoustic Oscillation. Specialized in data visualization and cosmography, a branch of cosmology dedicated to mapping the Universe, he also co-authored the discoveries of the Dipole Repeller and of the Cold Spot Repeller, two large influential cosmic voids, and the discovery of the South Pole Wall, a large-scale structure located in the direction of the south celestial pole beyond the southern frontiers of Laniakea.

Daniel Pomarède is science editor of Galaxy Science Fiction and If (magazine).

↓ Explore More Topics
In this Dossier

Baryon acoustic oscillations in the context of Accelerating expansion of the universe

Observations show that the expansion of the universe is accelerating, such that the velocity at which a distant galaxy recedes from the observer is continuously increasing with time. The accelerated expansion of the universe was discovered in 1998 by two independent projects, the Supernova Cosmology Project and the High-Z Supernova Search Team, which used distant type Ia supernovae to measure the acceleration. The idea was that as type Ia supernovae have almost the same intrinsic brightness (a standard candle), and since objects that are further away appear dimmer, the observed brightness of these supernovae can be used to measure the distance to them. The distance can then be compared to the supernovae's cosmological redshift, which measures how much the universe has expanded since the supernova occurred; the Hubble law established that the further away an object is, the faster it is receding. The unexpected result was that objects in the universe are moving away from one another at an accelerating rate. Cosmologists at the time expected that recession velocity would always be decelerating, due to the gravitational attraction of the matter in the universe. Three members of these two groups have subsequently been awarded Nobel Prizes for their discovery. Confirmatory evidence has been found in baryon acoustic oscillations, and in analyses of the clustering of galaxies.

The accelerated expansion of the universe is thought to have begun since the universe entered its dark-energy-dominated era roughly 5 billion years ago.Within the framework of general relativity, an accelerated expansion can be accounted for by a positive value of the cosmological constant Λ, equivalent to the presence of a positive vacuum energy, dubbed "dark energy". While there are alternative possible explanations, the description assuming dark energy (positive Λ) is used in the standard model of cosmology, which also includes cold dark matter (CDM) and is known as the Lambda-CDM model.

View the full Wikipedia page for Accelerating expansion of the universe
↑ Return to Menu

Baryon acoustic oscillations in the context of DECam

The Dark Energy Survey (DES) is an astronomical survey designed to constrain the properties of dark energy. It uses images taken in the near-ultraviolet, visible, and near-infrared to measure the expansion of the universe using Type Ia supernovae, baryon acoustic oscillations, the number of galaxy clusters, and weak gravitational lensing. The collaboration is composed of research institutions and universities from the United States, Australia, Brazil, the United Kingdom, Germany, Spain, and Switzerland. The collaboration is divided into several scientific working groups. The director of DES is Josh Frieman.

The DES began by developing and building Dark Energy Camera (DECam), an instrument designed specifically for the survey. This camera has a wide field of view and high sensitivity, particularly in the red part of the visible spectrum and in the near infrared. Observations were performed with DECam mounted on the 4-meter Víctor M. Blanco Telescope, located at the Cerro Tololo Inter-American Observatory (CTIO) in Chile. Observing sessions ran from 2013 to 2019; as of 2021 the DES collaboration has published results from the first three years of the survey.

View the full Wikipedia page for DECam
↑ Return to Menu