Biomass (ecology) in the context of "Ecology"

⭐ In the context of Ecology, Biomass is considered a crucial element in understanding…

Ad spacer

⭐ Core Definition: Biomass (ecology)

Biomass is the total mass of living biological organisms in a given area or ecosystem at a specific time. Biomass may refer to the species biomass, which is the mass of one or more species, or to community biomass, which is the mass of all species in the community. It encompasses microorganisms, plants, and animals, and is typically expressed as total mass or average mass per unit area.

The method used to measure biomass depends on the context. In some cases, biomass refers to the wet weight of organisms as they exist in nature. For example, in a salmon fishery, the salmon biomass might be regarded as the total wet weight the salmon would have if they were taken out of the water. In other contexts, biomass can be measured in terms of the dried organic mass, so perhaps only 30% of the actual weight might count, the rest being water. In other contexts, it may refer to dry weight (excluding water content), or to the mass of organic carbon, excluding inorganic components such as bones, shells, or teeth.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Biomass (ecology) in the context of Ecology

Ecology (from Ancient Greek οἶκος (oîkos)  'house' and -λογία (-logía)  'study of') is the natural science of the relationships among living organisms and their environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere levels. Ecology overlaps with the closely related sciences of biogeography, evolutionary biology, genetics, ethology, and natural history.

Ecology is a branch of biology, and is the study of abundance, biomass, and distribution of organisms in the context of the environment. It encompasses life processes, interactions, and adaptations; movement of materials and energy through living communities; successional development of ecosystems; cooperation, competition, and predation within and between species; and patterns of biodiversity and its effect on ecosystem processes.

↓ Explore More Topics
In this Dossier

Biomass (ecology) in the context of Marine protists

Marine protists are defined by their habitat as protists that live in marine environments, that is, in the saltwater of seas or oceans or the brackish water of coastal estuaries. Life originated as marine single-celled prokaryotes (bacteria and archaea) and later evolved into more complex eukaryotes. Eukaryotes are the more developed life forms known as plants, animals, fungi and protists. Protists are the eukaryotes that cannot be classified as plants, fungi or animals. They are mostly single-celled and microscopic. The term protist came into use historically as a term of convenience for eukaryotes that cannot be strictly classified as plants, animals or fungi. They are not a part of modern cladistics because they are paraphyletic (lacking a common ancestor for all descendants).

Most protists are too small to be seen with the naked eye. They are highly diverse organisms currently organised into 18 phyla, but not easy to classify. Studies have shown high protist diversity exists in oceans, deep sea-vents and river sediments, suggesting large numbers of eukaryotic microbial communities have yet to be discovered. There has been little research on mixotrophic protists, but recent studies in marine environments found mixotrophic protists contribute a significant part of the protist biomass. Since protists are eukaryotes (and not prokaryotes) they possess within their cell at least one nucleus, as well as organelles such as mitochondria and Golgi bodies. Many protist species can switch between asexual reproduction and sexual reproduction involving meiosis and fertilization.

↑ Return to Menu

Biomass (ecology) in the context of Standing stock (disambiguation)

Standing stock may refer to:

↑ Return to Menu

Biomass (ecology) in the context of Diatom

A diatom (Neo-Latin diatoma) is any member of a large group comprising several genera of algae, specifically microalgae, found in the oceans, waterways and soils of the world. Living diatoms make up a significant portion of Earth's biomass. They generate about 20 to 50 percent of the oxygen produced on the planet each year, take in over 6.7 billion tonnes of silicon each year from the waters in which they live, and constitute nearly half of the organic material found in the oceans. The shells of dead diatoms are a significant component of marine sediment, and the entire Amazon basin is fertilized annually by 27 million tons of diatom shell dust transported by transatlantic winds from the African Sahara, much of it from the Bodélé Depression, which was once made up of a system of fresh-water lakes.

Diatoms are unicellular organisms: they occur either as solitary cells or in colonies, which can take the shape of ribbons, fans, zigzags, or stars. Individual cells range in size from 2 to 2000 micrometers. In the presence of adequate nutrients and sunlight, an assemblage of living diatoms doubles approximately every 24 hours by asexual multiple fission; the maximum life span of individual cells is about six days. Diatoms have two distinct shapes: a few (centric diatoms) are radially symmetric, while most (pennate diatoms) are broadly bilaterally symmetric.

↑ Return to Menu

Biomass (ecology) in the context of Overfishing

Overfishing is the removal of aquatic animals — primarily fish — from a body of water at a rate greater than that the species can replenish its population naturally (i.e. the overexploitation of the fishery's existing fish stocks), resulting in the species becoming increasingly underpopulated in that area. Excessive fishing practices can occur in water bodies of any sizes, from ponds, wetlands, rivers, lakes to seas and oceans, and can result in resource depletion, reduced biological growth rates and low biomass levels. Sustained overfishing, especially industrial-scale commercial fishing, can lead to critical depensation, where the fish population is no longer able to sustain itself, resulting in extirpation or even extinction of species. Some forms of overfishing, such as the overfishing of sharks, has led to the upset of entire marine ecosystems. Types of overfishing include growth overfishing, recruitment overfishing, and ecosystem overfishing. Overfishing not only causes negative impacts on biodiversity and ecosystem functioning, but also reduces fish production, which subsequently leads to negative social and economic consequences.

The ability of a fishery to recover from overfishing depends on whether its overall carrying capacity and the variety of ecological conditions are suitable for the recovery. Dramatic changes in species composition can result in an ecosystem shift, where other equilibrium energy flows involve species compositions different from those that had been present before the depletion of the original fish stock. For example, once trout have been overfished, carp might exploit the change in competitive equilibria and take over in a way that makes it impossible for the trout to re-establish a breeding population.

↑ Return to Menu

Biomass (ecology) in the context of Deforestation and climate change

Deforestation is a primary contributor to climate change, and climate change affects the health of forests. Land use change, especially in the form of deforestation, is the second largest source of carbon dioxide emissions from human activities, after the burning of fossil fuels. Greenhouse gases are emitted from deforestation during the burning of forest biomass and decomposition of remaining plant material and soil carbon. Global models and national greenhouse gas inventories give similar results for deforestation emissions. As of 2019, deforestation is responsible for about 11% of global greenhouse gas emissions. Carbon emissions from tropical deforestation are accelerating.

When forests grow they are a carbon sink and therefore have potential to mitigate the effects of climate change. Some of the effects of climate change, such as more wildfires, invasive species, and more extreme weather events can lead to more forest loss. The relationship between deforestation and climate change is one of a positive (amplifying) climate feedback. The more trees that are removed equals larger effects of climate change which, in turn, results in the loss of more trees.

↑ Return to Menu

Biomass (ecology) in the context of Productivity (ecology)

In ecology, the term productivity refers to the rate of generation of biomass in an ecosystem, usually expressed in units of mass per volume (unit surface) per unit of time, such as grams per square metre per day (g m d). The unit of mass can relate to dry matter or to the mass of generated carbon. The productivity of autotrophs, such as plants, is called primary productivity, while the productivity of heterotrophs, such as animals, is called secondary productivity.

The productivity of an ecosystem is influenced by a wide range of factors, including nutrient availability, temperature, and water availability. Understanding ecological productivity is vital because it provides insights into how ecosystems function and the extent to which they can support life.

↑ Return to Menu

Biomass (ecology) in the context of Keystone species

A keystone species is a species that has a disproportionately large effect on its natural environment relative to its abundance. The concept was introduced in 1969 by the zoologist Robert T. Paine. Keystone species play a critical role in maintaining the structure of an ecological community, affecting many other organisms in an ecosystem and helping to determine the types and numbers of various other species in the community. Without keystone species, the ecosystem would be dramatically different or cease to exist altogether. Some keystone species, such as the wolf and lion, are also apex predators.

The role that a keystone species plays in its ecosystem is analogous to the role of a keystone in an arch. While the keystone is under the least pressure of any of the stones in an arch, the arch still collapses without it. Similarly, an ecosystem may experience a dramatic shift if a keystone species is removed, even though that species was a small part of the ecosystem by measures of biomass or productivity.It became a popular concept in conservation biology, alongside flagship and umbrella species. Although the concept is valued as a descriptor for particularly strong inter-species interactions, and has allowed easier communication between ecologists and conservation policy-makers, it has been criticized for oversimplifying complex ecological systems.

↑ Return to Menu