Ballistocardiography in the context of "Infrasound"

Play Trivia Questions online!

or

Skip to study material about Ballistocardiography in the context of "Infrasound"

Ad spacer

⭐ Core Definition: Ballistocardiography

The ballistocardiograph (BCG) is a measure of ballistic forces generated by the heart. The downward movement of blood through the descending aorta produces an upward recoil, moving the body upward with each heartbeat. As different parts of the aorta expand and contract, the body continues to move downward and upward in a repeating pattern. Ballistocardiography is a technique for producing a graphical representation of repetitive motions of the human body arising from the sudden ejection of blood into the great vessels with each heart beat. It is a vital sign in the 1–20 Hz frequency range which is caused by the mechanical movement of the heart and can be recorded by noninvasive methods from the surface of the body. It was shown for the first time, after extensive research work by Isaac Starr, that the effect of main heart malfunctions can be identified by observing and analyzing the BCG signal. Recent work also validates BCG could be monitored using camera in a non-contact manner.

One example of the use of a BCG is a ballistocardiographic scale, which measures the recoil of the persons body who is on the scale. A BCG scale is able to show a person's heart rate as well as their weight.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Ballistocardiography in the context of Infrasound

Infrasound, sometimes referred to as low frequency sound or incorrectly subsonic (subsonic being a descriptor for "less than the speed of sound"), describes sound waves with a frequency below the lower limit of human audibility (generally 20 Hz, as defined by the ANSI/ASA S1.1-2013 standard). Hearing becomes gradually less sensitive as frequency decreases, so for humans to perceive infrasound, the sound pressure must be sufficiently high. Although the ear is the primary organ for sensing low sound, at higher intensities it is possible to feel infrasound vibrations in various parts of the body.

The study of such sound waves is sometimes referred to as infrasonics, covering sounds beneath 20 Hz down to 0.1 Hz (and rarely to 0.001 Hz). People use this frequency range for monitoring earthquakes and volcanoes, charting rock and petroleum formations below the earth, and also in ballistocardiography and seismocardiography to study the mechanics of the human cardiovascular system.

↓ Explore More Topics
In this Dossier