Aurora in the context of Arctic


Aurora in the context of Arctic

Aurora Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Aurora in the context of "Arctic"


⭐ Core Definition: Aurora

An aurora (pl. aurorae or auroras) is a natural light display in Earth's sky, predominantly observed in high-latitude regions around the Arctic and Antarctic. The terms northern lights (aurora borealis) and southern lights (aurora australis) are used in the Northern and Southern Hemispheres respectively. Auroras display dynamic patterns of radiant light that appear as curtains, rays, spirals or dynamic flickers covering the entire sky.

Auroras are the result of disturbances in the Earth's magnetosphere caused by enhanced speeds of solar wind from coronal holes and coronal mass ejections. These disturbances alter the trajectories of charged particles in the magnetospheric plasma. These particles, mainly electrons and protons, precipitate into the upper atmosphere (thermosphere/exosphere). The resulting ionization and excitation of atmospheric constituents emit light of varying colour and complexity. The form of the aurora, occurring within bands around both polar regions, is also dependent on the amount of acceleration imparted to the precipitating particles.

↓ Menu
HINT:

In this Dossier

Aurora in the context of List of natural phenomena

↑ Return to Menu

Aurora in the context of Night sky

The night sky is the nighttime appearance of celestial objects like stars, planets, and the Moon, which are visible in a clear sky between sunset and sunrise, when the Sun is below the horizon.

Natural light sources in a night sky include moonlight, starlight, and airglow, depending on location and timing. Aurorae light up the skies above the polar circles. Occasionally, a large coronal mass ejection from the Sun or simply high levels of solar wind may extend the phenomenon toward the Equator.

View the full Wikipedia page for Night sky
↑ Return to Menu

Aurora in the context of Solar wind

The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5 and 10 keV. The composition of the solar wind plasma also includes a mixture of particle species found in the solar plasma: trace amounts of heavy ions and atomic nuclei of elements such as carbon, nitrogen, oxygen, neon, magnesium, silicon, sulfur, and iron. There are also rarer traces of some other nuclei and isotopes such as phosphorus, titanium, chromium, and nickel's isotopes Ni, Ni, and Ni. Superimposed with the solar-wind plasma is the interplanetary magnetic field. The solar wind varies in density, temperature and speed over time and over solar latitude and longitude. Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field. The boundary separating the corona from the solar wind is called the Alfvén surface.

At a distance of more than a few solar radii from the Sun, the solar wind reaches speeds of 250–750 km/s and is supersonic, meaning it moves faster than the speed of fast magnetosonic waves. The flow of the solar wind is no longer supersonic at the termination shock. Other related phenomena include the aurora (northern and southern lights), comet tails that always point away from the Sun, and geomagnetic storms that can change the direction of magnetic field lines.

View the full Wikipedia page for Solar wind
↑ Return to Menu

Aurora in the context of Airglow

Airglow is a faint emission of light by a planetary atmosphere. In the case of Earth's atmosphere, this optical phenomenon causes the night sky never to be completely dark, even after the effects of starlight and diffused sunlight from the far side are removed. This phenomenon originates with self-illuminated gases and has no relationship with Earth's magnetism or sunspot activity, causing aurorae.

Airglow occurs in two forms, as a result of a pair of interlinked but different processes. Dayglow occurs during the day and is caused by the splitting of atmospheric molecules but is too faint to be seen in daylight. During the night airglow occurs as nightglow, when the molecules split during daytime recombine.

View the full Wikipedia page for Airglow
↑ Return to Menu

Aurora in the context of Mist

Mist is a natural phenomenon caused by small droplets of water aerosols suspended in the cold air, usually by condensation. Physically, it is an example of a dispersion, most commonly seen where water vapor in warm, moist air meets sudden cooling, such as in exhaled air in the winter, or when hot sauna steam is suddenly released outside. Mist occurs naturally as part of weather, typically when humid air comes into contact with surfaces that are much cooler (e.g. mountains). It can also be created artificially with aerosol spray dispensers if the humidity and temperature conditions are right.

The formation of mist, as of other suspensions, is greatly aided by the presence of nucleation sites on which the suspended water phase can congeal. Thus even such unusual sources of nucleation as small ejecta particulates from volcanic eruptions, releases of strongly polar gases, and even the magnetospheric ions associated with polar lights can in right conditions trigger condensation and mist formation.

View the full Wikipedia page for Mist
↑ Return to Menu

Aurora in the context of Space physics

Space physics, also known as space plasma physics, is the study of naturally occurring plasmas within Earth's upper atmosphere and the rest of the Solar System. It includes the topics of aeronomy, aurorae, planetary ionospheres and magnetospheres, radiation belts, space weather, solar wind, the Sun, and more recently the Interstellar medium.

Space physics is both a pure science and an applied science, with applications in radio transmission, spacecraft operations (particularly communications and weather satellites), and in meteorology. Important physical processes in space physics include magnetic reconnection, plasma waves and plasma instabilities. It is studied using direct in situ measurements by sounding rockets and spacecraft, indirect remote sensing of plasmas with radar (through methods such as Incoherent scatter and GPS scintillation), and theoretical studies using models such as magnetohydrodynamics (fluid theory), or kinetic theory.

View the full Wikipedia page for Space physics
↑ Return to Menu

Aurora in the context of Star trail

A star trail is a type of photograph that uses long exposure times to capture diurnal circles, the apparent motion of stars in the night sky due to Earth's rotation. A star-trail photograph shows individual stars as streaks across the image, with longer exposures yielding longer arcs. The term is used for similar photos captured elsewhere, such as on board the International Space Station and on Mars.

Typical shutter speeds for a star trail range from 15 minutes to several hours, requiring a "Bulb" setting on the camera to open the shutter for a period longer than usual. However, a more practiced technique is to blend a number of frames together to create the final star trail image.

View the full Wikipedia page for Star trail
↑ Return to Menu

Aurora in the context of Mesosphere

The mesosphere (/ˈmɛsəsfɪər, ˈmɛz-, ˈmsə-, -zə-/; from Ancient Greek μέσος (mésos) 'middle' and -sphere) is the third layer of the atmosphere, directly above the stratosphere and directly below the thermosphere. In the mesosphere, temperature decreases as altitude increases. This characteristic is used to define limits: it begins at the top of the stratosphere (sometimes called the stratopause), and ends at the mesopause, which is the coldest part of Earth's atmosphere, with temperatures below −143 °C (−225 °F; 130 K). The exact upper and lower boundaries of the mesosphere vary with latitude and with season (higher in winter and at the tropics, lower in summer and at the poles), but the lower boundary is usually located at altitudes from 47 to 51 km (29 to 32 mi; 154,000 to 167,000 ft) above sea level, and the upper boundary (the mesopause) is usually from 85 to 100 km (53 to 62 mi; 279,000 to 328,000 ft).

The stratosphere and mesosphere are sometimes collectively referred to as the "middle atmosphere", which spans altitudes approximately between 12 and 80 km (7.5 and 49.7 mi) above Earth's surface. The mesopause, at an altitude of 80–90 km (50–56 mi), separates the mesosphere from the thermosphere—the second-outermost layer of Earth's atmosphere. On Earth, the mesopause nearly co-incides with the turbopause, below which different chemical species are well-mixed due to turbulent eddies. Above this level the atmosphere becomes non-uniform because the scale heights of different chemical species differ according to their molecular masses.

View the full Wikipedia page for Mesosphere
↑ Return to Menu

Aurora in the context of Radio frequency interference

Electromagnetic interference (EMI), also called radio-frequency interference (RFI) when in the radio frequency spectrum, is a disturbance generated by an external source that affects an electrical circuit by electromagnetic induction, electrostatic coupling, or conduction. The disturbance may degrade the performance of the circuit or even stop it from functioning. In the case of a data path, these effects can range from an increase in error rate to a total loss of the data. Both human-made and natural sources generate changing electrical currents and voltages that can cause EMI: ignition systems, cellular network of mobile phones, lightning, solar flares, and auroras (northern/southern lights). EMI frequently affects AM radios. It can also affect mobile phones, FM radios, and televisions, as well as observations for radio astronomy and atmospheric science.

EMI can be used intentionally for radio jamming, as in electronic warfare.

View the full Wikipedia page for Radio frequency interference
↑ Return to Menu

Aurora in the context of Thermosphere

The thermosphere is the layer in the Earth's atmosphere directly above the mesosphere and below the exosphere. Within this layer of the atmosphere, ultraviolet radiation causes photoionization/photodissociation of molecules, creating ions; the bulk of the ionosphere thus exists within the thermosphere. Taking its name from the Greek θερμός (pronounced thermos) meaning heat, the thermosphere begins at about 80 km (50 mi) above sea level. At these high altitudes, the residual atmospheric gases sort into strata according to molecular mass (see turbosphere). Thermospheric temperatures increase with altitude due to absorption of highly energetic solar radiation. Temperatures are highly dependent on solar activity, and can rise to 2,000 °C (3,630 °F) or more. Radiation causes the atmospheric particles in this layer to become electrically charged, enabling radio waves to be refracted and thus be received beyond the horizon. In the exosphere, beginning at about 600 km (375 mi) above sea level, the atmosphere turns into outer space, although, by the judging criteria set for the definition of the Kármán line (100 km), most of the thermosphere is part of outer space. The border between the thermosphere and exosphere is known as the thermopause.

The highly attenuated gas in this layer can reach 2,500 °C (4,530 °F). Despite the high temperature, an observer or object will experience low temperatures in the thermosphere, because the extremely low density of the gas (practically a hard vacuum) is insufficient for the molecules to conduct heat. A normal thermometer will read significantly below 0 °C (32 °F), at least at night, because the energy lost by thermal radiation would exceed the energy acquired from the atmospheric gas by direct contact. In the anacoustic zone above 160 kilometres (99 mi), the density is so low that molecular interactions are too infrequent to permit the transmission of sound.

View the full Wikipedia page for Thermosphere
↑ Return to Menu

Aurora in the context of Atmospheric phenomenon

↑ Return to Menu

Aurora in the context of Carrington Event

The Carrington Event was the most intense geomagnetic storm in recorded history, peaking on 1–2 September 1859 during solar cycle 10. It created strong auroral displays that were reported globally and caused sparking and even fires in telegraph stations. The geomagnetic storm was most likely the result of a coronal mass ejection (CME) from the Sun colliding with Earth's magnetosphere.

The geomagnetic storm was associated with a very bright solar flare on 1 September 1859. It was observed and recorded independently by British astronomers Richard Carrington and Richard Hodgson—the first records of a solar flare. A geomagnetic storm of this magnitude occurring today has the potential to cause widespread electrical disruptions, blackouts, and damage to the electrical power grid.

View the full Wikipedia page for Carrington Event
↑ Return to Menu

Aurora in the context of Stewart Island

Stewart Island (Māori: Rakiura, lit. 'glowing skies', officially Stewart Island / Rakiura, formerly New Leinster) is the third-largest and southernmost inhabited island of New Zealand, lying 30 kilometres (16 nautical miles) south of the South Island, separated by Foveaux Strait.

It is a roughly triangular island with a land area of 1,746 km (674 sq mi). Its 164-kilometre (102 mi) coastline is indented by Paterson Inlet (east), Port Pegasus (south), and Mason Bay (west). The island is generally hilly (rising to 980 metres or 3,220 feet at Mount Anglem) and densely forested. Flightless birds, including penguins, thrive because there are few introduced predators. Almost all the island is owned by the New Zealand government, and over 80 percent of the island forms Rakiura National Park.

View the full Wikipedia page for Stewart Island
↑ Return to Menu