Atomic spectral line in the context of "Atomic emission spectroscopy"

Play Trivia Questions online!

or

Skip to study material about Atomic spectral line in the context of "Atomic emission spectroscopy"

Ad spacer

⭐ Core Definition: Atomic spectral line

Spectroscopy is the field of study that measures and interprets electromagnetic spectra as it interacts with matter. In narrower contexts, spectroscopy is the precise study of color as generalized from radiated visible light to all bands of the electromagnetic spectrum.

Spectroscopy, primarily in the electromagnetic spectrum, is a fundamental exploratory tool in the fields of astronomy, chemistry, materials science, and physics, allowing the composition, physical and electronic structure of matter to be investigated at the atomic, molecular and macro scale, and over astronomical distances.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Atomic spectral line in the context of Atomic emission spectroscopy

Atomic emission spectroscopy (AES) is a method of chemical analysis that uses the intensity of light emitted from a flame, plasma, arc, or spark at a particular wavelength to determine the quantity of an element in a sample. The wavelength of the atomic spectral line in the emission spectrum gives the identity of the element while the intensity of the emitted light is proportional to the number of atoms of the element. The sample may be excited by various methods.

Atomic Emission Spectroscopy allows us to measure interactions between electromagnetic radiation and physical atoms and molecules. This interaction is measured in the form of electromagnetic waves representing the changes in energy between atomic energy levels. When elements are burned by a flame, they emit electromagnetic radiation that can be recorded in the form of spectral lines.  Each element has its own unique spectral line because each element has a different atomic arrangement, so this method is an important tool for identifying the makeup of materials. Robert Bunsen and Gustav Kirchhoff were the first to establish atomic emission spectroscopy as a tool in chemistry.

↓ Explore More Topics
In this Dossier

Atomic spectral line in the context of Superconductivity

Superconductivity is a set of physical properties observed in superconductors: materials where electrical resistance vanishes and magnetic fields are expelled from the material. Unlike an ordinary metallic conductor, whose resistance decreases gradually as its temperature is lowered, even down to near absolute zero, a superconductor has a characteristic critical temperature below which the resistance drops abruptly to zero. An electric current through a loop of superconducting wire can persist indefinitely with no power source.

The superconductivity phenomenon was discovered in 1911 by Dutch physicist Heike Kamerlingh Onnes. Like ferromagnetism and atomic spectral lines, superconductivity is a phenomenon which can only be explained by quantum mechanics. It is characterized by the Meissner effect, the complete cancellation of the magnetic field in the interior of the superconductor during its transitions into the superconducting state. The occurrence of the Meissner effect indicates that superconductivity cannot be understood simply as the idealization of perfect conductivity in classical physics.

↑ Return to Menu